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Cells, chromosomes, DNA

Chromosome




Chromosomic aberrations in cancer cells




Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio
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Cancer prognosis: can we predict the future evolution?
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Problem 1

From a CGH profile, can we predict whether a melanoma will relapse

(left) or not (right)?




DNA — RNA — protein
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Use in diagnosis
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Problem 2

Given the expression profile of a leukemia, is it an acute lymphocytic or
myeloid leukemia (ALL or AML)?




Use in prognosis
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Problem 3

Given the expression profile of a breast cancer, is the risk of relapse

within 5 years high?




Proteins

Amino Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Acide glutamique K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Acide aspartique G : Glycine




Protein annotation

Data available

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQONQCQLQNIEA. ..
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Problem 4

Given a newly sequenced protein, is it secreted or not?




Drug discovery

active
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Problem 5
Given a new candidate molecule, is it likely to be active?




Gene network inference

Problem 6

Given known interactions, can we infer new ones?




A common topic...
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A common topic...



Pattern recognition, aka supervised classification

Challenges

@ High dimension
Few samples

@ Structured data

@ Heterogeneous data
@ Prior knowledge
°

Fast and scalable
implementations

Interpretable models




@ Introduction

@ Learning in high dimension

e Learning with kernels

e Learning with sparsity



More formally

@ X the space of patterns (typically, X = RP)

@ ) the space of response or labels
o Classification or pattern recognition: Y = {—1,1}
o Regression: Y =R

@ S={(x1,¥1),...,(xn, ¥n)} atraining setin (X x V)"

@ A function f: X — ) to predict the output associated to any new
pattern x € X by f(x)
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Simple example 1

(Hastie et al. The elements of statistical learning. Springer, 2001.)



Simple example 1 : 1-nearest neighbor (1-NN)




What’s wrong?

@ OLS: the linear separation is not appropriate = "large bias"
@ 1-NN: the classifier seems too unstable = "large variance"



The fundamental "bias-variance" trade-off

@ Assume Y = f(X) + ¢, where ¢ is some noise
@ From the training set S we estimate the predictor

@ On a new point x, we predict 7(xg) but the "true" observation will
be Yo = f(x0) + €
@ On average, we make an error of:

E.s (Yo - ?(XO))2
. 2
=E.s (f(xo) +e— f(XO))
= Eé® + Es (f(XO) - ?(XO))Z

= £ 1 (1(0) ~ Estx0))” + Es (1(00) — Esfxo))°

= noise + bias? + variance



Back to OLS

@ Parametric model for 8 € RPH:
p
f3(X)=Bo+ > _BiXi=X'p
i—1

@ Estimate /3 from training data to minimize

n

RSS(B) = > (i — fa(x)))?

i=1

@ Solution if XT X is non-singular:

B= (xTx)f1 X7y



Optimality of OLS

Gauss-Markov theorem

@ Assume Y = X3 + ¢, where Ee = 0 and Eee | = 5°.

@ Then the least squares estimator /3 is BLUE (best linear unbiased
estimator), i.e., for any other estimator 5 = CY with Ej = §3,

Var(5) < Var(p)




Optimality of OLS

Gauss-Markov theorem

@ Assume Y = X3 + ¢, where Ee = 0 and Eee | = 5°.

@ Then the least squares estimator /3 is BLUE (best linear unbiased
estimator), i.e., for any other estimator 5 = CY with Ej = §3,

Var(5) < Var(p)

v

Nevertheless, if variance may be very large, we may have smaller total
risk by increasing bias to decrease variance



The curse of dimensionality

Small dimension Large dimension

In high dimensions, variance dominates. BLUE estimators are useless.



A solution: shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP
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R(8) = S (fs(x) — i)
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A solution: shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(8) = S (fs(x) — i)

i=1

© Choose $ that achieves the minimium empirical risk, subject to
some constraint:

mﬂinR(ﬁ) subjectto  Q(B8) < C.




Why skrinkage classifiers?
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Why skrinkage classifiers?

mﬁin R(8) subjectto Q(B)<C.

@ "Increases bias and decreases variance"
@ Equivalent formulation:

mgn R(B) + XQ(B) .



Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est
b

b>l<




Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est
b

b>l<




Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est est
ob bC




Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est
b

b>l<




Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est
b

b>l<




Choice of Q can decrease the bias

mﬁinR(ﬁ) subjectto  Q(B8) < C.

est
b




Choice of C or \: structured regression and model

selection

@ Define a family of function classes F), where X controls the
"complexity”
@ For each ), define
fy = argmin EPE(f)
Fa

@ Select 7 = ¥ to minimize the bias-variance tradeoff.

High Bias Low Bias

Prediction Error
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Cross-validation

A simple and systematic procedure to estimate the risk (and to
optimize the model’s parameters)

@ Randomly divide the training set (of size n) into K (almost) equal
portions, each of size K/n

@ For each portion, fit the model with different parameters on the
K — 1 other groups and test its performance on the left-out group

© Average performance over the K groups, and take the parameter
with the smallest average performance.

Taking K = 5 or 10 is recommended as a good default choice.



@ Many problems in computational biology and medicine can be
formulated as high-dimensional classification or regression tasks

© The total error of a learning system is the sum of a bias and a
variance error

© In high dimension, the variance term often dominates
© Shrinkage methods allow to control the bias/variance trade-off

©@ The choice of the penalty is where we can put prior knowledge to
decrease bias



Choosing or designing a penalty...

mﬁin R(8) subjectto Q(5) < C.

We will only focus on convex penalties, which lead to efficient
algorithms. We will touch upon two important families of penalties:

@ Smooth convex penalty: ridge regression, SVM, kernels...
© Nonsmooth convex penalty: lasso, group lasso, fused lasso,...
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Ridge regression (RR)

@ Consider linear predictors:

fs(x) = 8" x forx € RP
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@ Consider linear predictors:

fs(x) = 8" x forx € RP

© Consider the RSS empirical risk:
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Ridge regression (RR)

@ Consider linear predictors:

fs(x) = 8" x forx € RP

© Consider the RSS empirical risk:

R(5) = 7 S (5s0) — i)

i=1

© Consider the Euclidean norm as a penalty:

=18l = Zﬂ,



Ridge regression (RR)

min R(B) + AQ(B)

BERPH
n p
= (i) —y)F+A>_ 87 (1)
= i=

=(y—XB)"(y - XB)+A375.



Ridge regression (RR)

min R(B) + AQ(B)

BERPH
n p
= (i) —y)F+A>_ 87 (1)
= i=

=(y—XB)"(y - XB)+A375.

Explicit solution:
N —1
B=(X"x+x1) XTy.



Ridge regression example
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Generalizations

min A(3) + A9

where
n

R(5) = =5 (1% %)

i=1
for more general loss functions ¢



Loss for regression

@ Square loss : £(f(x),y) = (f(x) —y)?
@ c-insensitive loss : £(f(x),y) = (| f(X) —y|—¢€),
@ Huber loss : mixed quadratic/linear

4 —square
—e—insensitive
—Huber
3
2
(LR
1 "'"i’ll';;;f N
LT 7777 TR
""7"‘%]1]1%1;7 N
’;‘l:y,‘{l(llllln;;;;ﬁ\\\\\\\\n\\
"Vlll",%%’lll
-3 -2 - 0 1 2 3 ——

y—f(x)



Loss for pattern recognition

Large margin classifiers

@ For pattern recognition ) = {—1,1}

@ Estimate a function f : & — R.

@ The margin of the function f for a pair (x,y) is: yf (x).

@ The loss function is usually a decreasing function of the margin :

C(f(x),y) = ¢ (yf(x)),

5

— 01

4 — hinge
square

—— logistic

3




Example: logistic regression

o(f(x),y) = In (1 +e7¥)
1§ AT x 2
JB) = > In(14+e77) + |81
i=1
No explicit solution, optimization by Newton-Raphson (called iteratively
reweighted least squares, IRLS)

oJ 1 n YiXi . 1 n
%(5) =5 ; 1t erfx +2\5 = “h ;ylp(_yl | Xi)Xi + 23
092J 1

n xTaB" X
XiX;' e
(B =) S+ 2\
o505 = 7 = (1+e87%)?

1 n
= -2 p(11x) (1= p(1 %)) xix;" + 21
=1



Probabilistic interpretation of logistic regression

Exercice

Show that logistic regression finds the penalized maximum likelihood
estimator:

1 n
mgleZIn Ps(Y = yi| X = x;) — X||B]I3,
s

for the following model:

eB ' x

P(Y=-1|X=x)=

1
1468 x




Example: hard-margin SVM
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Example: hard-margin SVM




Which one is better?




The margin of a linear classifier



The margin of a linear classifier




The margin of a linear classifier




The margin of a linear classifier




The margin of a linear classifier




Hard-margin SVM




Hard-margin SVM

Exercice

Show that hard-margin SVM solves a problem of the form:

1
mﬁmEZEHM_SVM(fﬁ(Xi),Yi) + A5 -
i—1

What is EHM—SVM?




Example: (soft-margin) SVM

@ The hinge loss
1(£(x),y)

yf(x)

o

0 if u>1,
Phinge(U) = max (1 —u,0) = { -

1—u otherwise.

@ SVM solves:
1 n
mBin {n Z hinge (Yifs (X)) + Al 8 H%} .
i=1
@ No explicit solution. This is a convex but non-smooth optimization

problem, equivalent to a quadratic program (QP) which can be
solved efficiently.



SVM: graphical interpretation
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SVM: graphical interpretation




SVM: graphical interpretation

Exercice
Show that SVM finds a trade-off between large margin and few errors,
by minimizing a function of the form:

min {Wln(f) +C x errors(f)}

Explicit C and error(f).




Summary: ls-regularize linear methods

4 —square
—e-insensitive|
—Huber

— 0-1

— hinge
square

—— logistic

- N w a

o 1 2 3 o —
y-(x) 3 2 A 0 1 2 3 4

1
fa(x) = B"x, min > Ufs(xi), i) + M BII5

i=1

@ Many popular methods for regression and classification are
obtained by changing the loss function: ridge regression, logistic
regression, SVM...

@ Needs to solve numerically a convex optimization problem, well
adapted to large datasets (stochastic gradient...)

@ In practice, very similar performance between the different
variants in general
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Sometimes linear methods are not interesting

o) © ©
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o 0
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Solution: non-linear mapping to a feature space




Kernels

Definition
For a given mapping ¢ from the space of objects A to some feature
space, the kernel between two objects x and x’ is the inner product of

their images in the features space:

VX, x' e X, K(x,x)=®(x).0(x).

Example: if ®(X) = (x2,x2)', then

K(%,X') = $(X).8(X') = (3)2(x)% + (x2)?(xp)%.



Representer theorem

Let f3(x) = BT ®(x). Then any solution ?5 of

1L 2
mﬁll’]ng(fﬁ(xl)a}/l)"')‘“ﬂnz

can be expanded as

n
= a;K(x;,X)
=il

where a € R” is a solution of:

ij=1

()ﬂgnﬁ;f (Z a;K (i, X;), y,) + A Z o K(Xi, X;) -
I




Representer theorem: proof

@ For any 8 € RP, decompose 3 = s + 3, where
Bs € span(®(xq),...,P(xy)) and 3, is orthogonal to it.
@ On any point x; of the training set, we have:

f3(x;) = BT (X)) = BS (X)) + BL (X)) = B (X)) = f35(X)

@ On the other hand, we have ||3]|? = ||8s]|2 + |BL]I? > ||8s]|?, with
strict inequality if 5, # 0.

@ Consequently, Ss is always as good as 3 in terms of objective
function, and strictly better if 3, # 0. This implies that at any
minimum, 3, = 0 and therefore 5 = 85 = 27:1 a;j®(x;) for some
a e RN

@ We then just replace 5 by this expression in the objective function,
noting that

||5”2 = Za/ (xi ”2 = Z aja;d(x;) CD(XJ) = Z ajoiK(X;, X;)

ij=1 ij=1



Example: kernel ridge regression

@ Let f3(x) = 3T ®(x) and K the corresponding kernel.
@ By the representer theorem, any solution of:

n

N 1
f= arg min_ > (i fa(xi)?+ M B3
s M4

can be expanded as:



Example: kernel ridge regression

o Leta = (aq,...,an)" €R",
@ Let K be the n x n Gram matrix: Kj; = K (X;, X)) .
@ We can then write in matrix form:

~ N T
<f(x1)7"'af(xn)) :Kaa
@ The following holds as usual:

18115 = e K.



Example: kernel ridge regression

@ The problem is therefore equivalent to:

arg min- (Ka—y)" (Ka—y)+ a'Ka.
aern N

@ This is a convex and differentiable function of . Its minimum can
therefore be found by setting the gradient in « to zero:

0= %K(Ka—y)—FZ)\Ka

= K[(K+ AN a — ]



Example: kernel ridge regression

@ K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) L Im(K).

@ In this basis we see that (K + ANI)~" leaves Im(K) and Ker(K)
invariant.

@ The problem is therefore equivalent to:
(K+ AN a —y € Ker(K)
sa— (K+ NNy e Ker(K)
sa=(K+ NNy +e with Ke = 0.



Example: kernel ridge regression

@ However, if o/ = o + € with Ke = 0, then:
18-8E=(a-a) K(a—a)) =0,

therefore 8 = 3.
@ One solution to the initial problem is therefore:

with



Example: kernel logistic regression of kernel SVM

@ We learn the function f(x) = >°1; a;K(x;, X) by solving in « the
following optimization problem, with adequate loss function ¢:

— A
g S (St o2 St

@ No explicit solution, but convex optimization problem

@ Note that the dimension of the problem is now n instead of p
(useful when n < p)



Kernel example: polynomial kernel

For X = (x1, %) € R, let &(X) = (X2, V2x1x2, x3) € RS;

K(X,X') = X2X{2 + 2x1 XpX; Xb + X2 X2
( 1X1 + X2X2)

%)

’><7



Kernel example: polynomial kernel

0©_0
I
%00 OO
x2 ° 0%
.. Q, O
oo °® 000 x2?

More generally,
K(X,X) = (%X +1)°

is an inner product in a feature space of all monomials of degree up to
d (left as exercice.)



Which functions K(x, x") are kernels?

Definition

A function K(x, x") defined on a set X is a kernel if and only if there
exists a features space (Hilbert space) # and a mapping

X —H,

such that, for any x, x’ in X:




@ Aninner product on an R-vector space H is a mapping
(f,9) — (f,g), from H2 to R that is bilinear, symmetric and such
that (f,f) > 0 for all f € H\{0}.

@ A vector space endowed with an inner product is called
pre-Hilbert. It is endowed with a norm defined by the inner product

1
as || |l = (£, )2,

@ A Hilbert space is a pre-Hilbert space complete for the norm
defined by the inner product.



Positive Definite (p.d.) functions

Definition

A positive definite (p.d.) function on the set X’ is a function
K: X x X — R symmetric:

V(x,x) e X%, K (x,x)=K(X,x),

and which satisfies, for all N € N, (x4, Xz, .

., xy) € XN et
(ay,a,...,an) € RN:

Za,a, (x;,%;) > 0.
1 j=1

=




Kernels are p.d. functions

Theorem (Aronszajn, 1950)
K is a kernel if and only if it is a positive definite function.




Proof: kernel — p.d.

® (®(X),(X))gs = (& (X'),d (X)) ,
o YN YN aai (@ (x), @ (x))ps = | N, @ (x;) 12, >0 .



Proof: p.d. = kernel (1/5)

@ Assume K: X x X — Ris p.d.
@ Forany x € X, let Kx : X — R defined by:

Ky :t— K(x,t).

@ Let H, be the vector subspace of R* spanned by the functions
{Kx} e i-€. the functions f : X — R for the form:

m
f= Z a,'le.
i=1

forsome me Nand (ay,...,am) € R™.



Proof: p.d. = kernel (2/5)

@ Forany f,g € Hop, given by:

m n
f= Z aiky, 9= Z biKy, .
i=1 j=1

let:

(F,9)3, = > _ aibjK (Xi,y;) .
ij

o (f, g)H0 does not depend on the expansion of f and g because:

m n
Hy = Z aig (xj) = Z bif (yj) -
i1 =

@ This also shows that (., .);, is @ symmetric bilinear form.
@ This also shows that forany x € X and f € Hg:

(f, K) gy = £ (X) -



Proof: p.d. = kernel (3/5)

@ K is assumed to be p.d., therefore:
1113, = Z aaK (x;, ;) > 0.
ij=1

In particular Cauchy-Schwarz is valid with (., )5, .
@ By Cauchy-Schwarz we deduce that Vx € X':

1
< [ Fll-K (%, %)2

£ = | (. K

therefore || 7 ||, =0 = f=0.
@ H, is therefore a pre-Hilbert space endowed with the inner
product (., )3, -



Proof: p.d. = kernel (4/5)

@ For any Cauchy sequence (f),>0 in (’Ho, (. .>HO>, we note that:

VX mn) € XX N2 | (X) = Fo (X) | < [l fm — i l3g K (X, X) .

Therefore for any x the sequence (f,(x)),~ is Cauchy in R and
has therefore a limit. -

@ If we add to #H, the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space (up to a few technicalities, left as
exercice). O



Proof: p.d. = kernel (5/5)

@ Let now the mapping ¢ : X — H defined by:
Xe X, o(x)=Kx.
@ By the reproducing property we have:

V(X,y) € Xz? <(D(X), ¢(y)>?-[ - <KX7 Ky>7-[ - K(Xy) . O




Kernel examples

@ Polynomial (on RY):
K(x,x') = (x.x' +1)¢

@ Gaussian radial basis function (RBF) (on RY)

12
K(x,x") = exp <_||X2—0)2( H >
@ Laplace kernel (on R)
K(x,x") = exp (=[x — X'|)
@ Min kernel (on R)

K(x,x") = min(x, x’)

Exercice: for each kernel, find a Hilbert space ‘H and a mapping
& : X — H such that K(x, x") = (®(x), d(x))




Example: SVM with a Gaussian kernel

Za,exp( _X’||2>

SVM classification plot
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How to choose or make a kernel?

@ | don’t really know...

@ Design features?

@ Adapt a distance or similarity measure?
@ Design a regularizer on f?



Example: design features (Gartner et al., 2003)

1b 2a 1d
O
3e
2d
4c 4e
Gl e Gl x &

K(Gi, G) =17 A% . 6,1

Show that the features are the counts of labeled walks of length nin
the graph.

@‘@ ® (0.....0,2,0,...,0,1,0,...)
B—® ! !

(B [(6—Ba—@—06)




Example: adapt a similarity measure (Saigo et al.,

2004)

CGGSLIAMM-——-WEGV

R R R
C—-—-LIVMMNRLMWEGV

Ssg(m) = S(C,C) + S(L, L)+ S(I,1) + S(A, V) +25(M, M)
+ S(W, W)+ S(F,F)+ S(G,G)+ S(V, V) —-9g(3) —g(4)

SWsq(X,Y) = max Ssg(m) s not a kernel

KL(E\) (x,y) = Z exp (8ss g (x,y,m)) is akernel
meN(x,y)



Example: design a regularizer

@ Remember f3(x) = x " ®(x), the regularizer is Q(f3) = ||3]|?
@ Regularize in the Fourier domain:

ol

A wz - 2
o - [l Tds Kixy) - e (-0

@ Sobolev norms

]
Q(f) = /o f(uPdu  K(x,y)=min(x,y)



@ Introduction

e Learning with kernels

@ Learning molecular classifiers with network information

e Learning with sparsity



Molecular diagnosis / prognosis / theragnosis
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
@ Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge




Graph based penalty

fa(x) = B x mﬁin R(f3) + AQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weigths.




Graph based penalty

fa(x) = B x mﬁin R(f3) + AQ(B)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)
Q(B) =D (B - 8)?,

i~j

min A(fs) + 2D (6 — 5)°.

inf




Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1. 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0



Spectral penalty as a kernel

Theorem

The function f(x) = 87 x where 3 is solution of

5'21'13:7725 (/BTthI> + )\Z

i~f

is equal to g(x) = 7" ®(x) where ~ is solution of

52%}7325( T(D(X/) YI) +/\'Y Y,

and where
d(x)To(x') = x"Kgx’

for Kg = L*, the pseudo-inverse of the graph Laplacian.




0.88 -0.12 0.08 —-0.32 -0.52

-0.12 0.88 0.08 -0.32 -0.52

L= 0.08 008 028 —-0.12 -0.32
-032 -0.32 -0.12 048 0.28

-052 -052 -032 028 1.08



Classifiers
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Other penalties with kernels

d(x)To(x') = x"Kgx’
with:
@ Kg=(c+ L) 1leadsto

p
QB)=cd F#+> (6i-5)° .
=1 i~j
@ The diffusion kernel:

Kg = expy(—2tL) .

penalizes high frequencies of /5 in the Fourier domain.




@ Introduction

e Learning with kernels

@ Data integration with kernels

e Learning with sparsity



@ Assume we observe K types of data and would like to learn a joint
model (e.g., predict susceptibility from SNP and expression data).

@ We saw in the previous part how to make kernels for each type of
data, and learn with kernels

@ Kernels are also well suited for data integration!



@ For a kernel K(x,x') = ®(x) " ®(x’), we know how to learn a
function f3(x) = BT ®(x) by solving:

min A(f5) + A%
@ By the representer theorem, we know that the solution is
n
f(x) =Y aiK(x,x),
i=1

where a € R" is the solution of another optimization problem:

. T . .
min R(Ka) +  a' Ka = min Jk (o).



The sum kernel

@ Let Ki,..., Ky be M kernels corresponding to M sources of data
@ Summing the kernel together defines a new "integrated" kernel

Theorem

Learning with K = S"M . K; is equivalent to work with a feature vector
®(x) obtained by concatenation of ®¢(x), ..., dy(x). It solves the
following problem:

M M
min R (Z fﬂ;) +AD 1B
i=1 i=1

.

Proof left as exercise.



Example: protein network inference

Vol. 20 Suppl. 12004, pages i363-1370
DOI: 10.1098/bioinformatics/bth910

b Protein network inference from multiple

genomic data: a supervised approach
Y. Yamanishi'-*, J.-P. Vert? and M. Kanehisa’

"Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,

Uji, Kyoto 611-0011, Japan and ?Computational Biology group, Ecole des Mines de
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Kexp (Expression)

Kppi (Protein interaction)

Kioc (Localization)

Kpny (Phylogenetic profile)

Kexp + Kppi + Kioe + Kphy
(Integration)

True positive

0z

Expression

Protein interaction

Localization

¥

Phylogenetic profile

False positive



Multiple kernel learning (Lanckriet et al., 2004)

@ Perhaps a more clever approach is to learn a weighted linear
combination of kernels:

M
Ky=> niKi with 7;>0,
i=1
@ MKL learns the weights with the predictor by solving:

mgr) Jk, (o) suchthat Trace(K,) = 1.
m,

@ The problem is jointly convex in (n, &) and can be solved efficiently

@ The output is both a set of weights n, and a predictor
corresponding to the kernel method trained with kernel K;,.



Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

A statistical framework for genomic data fusion

Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini?,
Michael I. Jordan? and William Stafford Noble® *

" Department of Electrical Engineering and Computer Science, ?Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
SDepartment of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, 4Dspem‘ment of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA

1.0
§ 0.9
0.8
0.7
B SW Pfam FFT LI D E all
& 40
Kemnel Data Similarity measure &30
~20
10
Ksw protein sequences Smith-Waterman 0
Kp protein sequences BLAST B SW  Pfam FFT LI D E all
Kefam protein sequences Pfam HMM o |
Krer hydropathy profile FFT £
Ku protein interactions linear kernel ©0.5
Kp protein interactions diffusion kernel =
Ke gene expression radial basis kernel 0
KrnD random numbers linear kernel

(B) Membrane proteins




MKL revisited

Theorem (Bach et al., 2004)

MKL solves the following problem:

M M
min R (Z fﬁf) + A8l
i=1 i=1

3, seeerlay

@ This is an instance of (kernelized) group lasso (more later...)
@ This promotes sparsity at the kernel level

@ MKL is mostly useful if only a few kernels are relevant; otherwise
the sum kernel may be a better option.



@ Introduction

e Learning with kernels

e Learning with sparsity
@ Feature selection
@ Lasso and group lasso
@ Segmentation and classification of genomic profiles
@ Learning molecular classifiers with network information (bis)



@ Introduction

e Learning with kernels

e Learning with sparsity
@ Feature selection



@ In feature selection, we look for a linear function f(x) = x 3,
where only a limited number of coefficients in 5 are non-zero.
@ Motivations
e Accuracy: by imposing a constraint on 3, we increase the bias but

decrease the variance. This should be helpful in particular in high
dimension.

o Interpretation: simpler to understand and communicate a sparse
model.

e Implementation: a device based on a few markers can be cheaper
and faster.

Of course, this is particularly relevant if we believe that there exist
good predictors which are sparse (prior knowledge).




Best subset selection

Q(B) = ||1Bllo = number of non-zero coefficients

@ In best subset selection, we must solve the problem:
minR(fs) st ||Bllo <k

fork=1,...,p.
@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ This is usually a NP-hard problem, feasible for p as large as 30 or
40




Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

@ Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

@ Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop

@ Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).




Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used

@ Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)

e Other performance criteria of the ERM restricted to a single feature
(AUC, ...)

o Information theoretical criteria (mutual information...)




Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used

@ Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)

e Other performance criteria of the ERM restricted to a single feature
(AUC, ...)

o Information theoretical criteria (mutual information...)
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Simple, scalable, good empirical success




Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used

@ Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)

e Other performance criteria of the ERM restricted to a single feature
(AUGC, ..))

e Information theoretical criteria (mutual information...)

Simple, scalable, good empirical success

@ Selection of redundant features

@ Some variables useless alone can become useful together




Measuring dependency: correlation coefficients

@ Assume X and Y take continuous values
@ (X1,Y1),...,(Xn, Yn) the n expression values of both genes

@ Pearson correlation:
_cov(X,Y) _ SU(X = X)(Y; - Y)

XY= X2 (Y- VP

@ Spearman correlation: similar but replace X; by its rank.




lllustration

Spearman correlation=1

Spearman correlation=0.35

Pearson correlation=0.88
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10— -
° o ©
o b e |
5 o1 e [} °
o
4 =8 q
b :
oF M 1 ° ?% OO%OOOOO%OQQO
ng
> W o 8 g o Py
-1 & . g ° JJlege g
—1f °..%% .02 0o ]
8 P C
o 08 °
-10r o 8 | @ o
® -2 . o
_15LL i H ; i H 3 ; H i ; H
00 02 04 06 08 10 =3 -2 -1 0 1 2 3
X X
Spearman correlation=0.84 Spearman correlation=-0.91
Pearson correlation=0.67 4.0 T T T T
° 3.5p0 ¢ R
2F & 1
o o ° 3.0—88@,O |
1k 0% b o®
[} (5] o [ 4
4 O s
F . Q0
>0 2.0b o ® .o 0.0 E
° Q%b ° © on0 ® °
Sl B 1 15k 00 0 g oPggd
5 &° | . [ O%Oo
—2p e 1.0 & o
2 0 4 6 030 0z 04 06 08 Lo

XNt




Limit of correlations




Mutual information

106 ¥) = [ [ ptx.y)iog (M) dxdy

@ /(X;Y)>0
@ /(X;Y)=0ifand only if X and Y are independent

1.0 0.8 0.4 0.0 —0.4 —0.8 -1.0
YO N
1.0 1.0 1.0 -1.0 -1.0 . -1.0
L < e R o e o

0.0 0.0 0.0




Wrapper methods

@ A greedy approach to

min R(f3) st ||Bllo <k

@ For a given set of seleted features, we know how to minimize R(f)

@ We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)




Two flavors of wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit




Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit




Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features
@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

Other variants

Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move




@ Introduction

e Learning with kernels

e Learning with sparsity

@ Lasso and group lasso



@ The following problem is NP-hard:
min R(fz) st ||Bllo <k

@ As a proxy we can consider the more general problem:
min R(f3) s.t. Q(B) <«

where Q() is a penalty function that leads to sparse solutions
and to computationally efficient algorithms.




LASSO regression (Tibshirani, 1996)

Basis Pursuit (Chen et al., 1998)

p
QB)=18l1=>)_18
i=1

@ LASSO or BP:

n p
min R(fs) =Y (fs(x) —yi)> + 1> | Bl (2)
i=1 i=1
@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all X’s simultaneously (regularization path)



LASSO regression example

500

0

-500

0 1000 2000 3000



Why LASSO leads to sparse solutions

Geometric interpretation with p = 2




Generalization : Selecting pre-defined groups of
variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢1/¢2-norm induces sparse solutions at the group level:

Qqroup(8) = 1Bll1,2 =) _ [|Bgll2
9

Q(B1, B2, 83) = [1(B1, B2)ll2 + 1| Ball2

\/51 + 65+ \/@




Extension to other loss functions

Of course we can learn sparse or group-sparse linear models with any
different (smoothly convex) loss function:

NEREN
min > e(fs (%), ¥i) + AlIBl1 or 1Bl .2

i=1

B




@ Introduction

e Learning with kernels

e Learning with sparsity

@ Segmentation and classification of genomic profiles



Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio

A9 10 11 12 13 14 15 1R 17 1R 19200P2 23 X
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Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min ||Y ~ 8" such that ’;1 (Biv1 # Bi) <k



Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min ||Y ~ 8" such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the (f) partitions...



Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min ||Y ~ 8" such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the (f) partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory



Optimal breakpoint detection

@ Let Y € RP the signal. We search a smooth profile 5 € RP with at
most k change-points by solving

p—1
; 2 . .
min ||Y ~ 8" such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the (f) partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 108 ~ 10°...



Promoting piecewise constant profiles

p—1
QB) = IBllrv =D _ |Bix1 —

i=1

The total variation / variable fusion penalty
If R(5) is convex and "smooth", the solution of

min A(S sz,ﬂ

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = 8j1 — Bi, Ugp = 51
@ We obtain a Lasso problem in u € RP—!
@ U sparse means S piecewise constant



TV signal approximator

p—1
; - 2 L — (<
min ||Y'— 8| such that ;m,ﬂ Bil < p

Adding additional constraints does not change the change-points:
e > .| 8| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e Y P . 32 < v (Mairal et al. 2010)

Sige
2 1 0 1 2 3
=}




Solving TV signal approximator

p—1
in|Y—23]? h that 3ii1 — Bi| <
min | ¥~ 5| suchtha ;I%m Bil <u

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all . with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)



TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

Require: & number of intervals, v(I) gain function to split an interval [ into Iy, (1), [r(])
1: Iy represents the interval [1,n]

: P ={l}

: fori=1tok do

I* + argmaxy (I*)

B owon

P PU{lL(I*), Ir (")}
end for
return P

® N L

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation




TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

Require: & number of intervals, v(I) gain function to split an interval [ into Iy, (1), [r(])
1: Iy represents the interval [1,n]

: P ={l}

: fori=1tok do

I* + argmaxy (I*)

B owon

P PU{lL(I*), Ir (")}
end for
return P

® N L

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!



Speed trial : 2 s. for K = 100, p = 107
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Applications

Vol. 27 no. 2 2011, 268-269
AP P LI CATI ON S N 0 TE d((])i: 10. 7393/bioinfo‘r’;iiis/btqsaS

Genome analysis Advance Access publication November 15, 2010

Control-free calling of copy nhumber alterations in
deep-sequencing data using GC-content normalization

Valentina Boeva'-2-3-4-* Andrei Zinovyev'-2-3, Kevin Bleakley'-2-3, Jean-Philippe Vert'-2:3,
Isabelle Janoueix-Lerosey-4, Olivier Delattre’# and Emmanuel Barillot'-2-3

Tinstitut Curie, 2INSERM, U900, Paris, F-75248, 3Mines ParisTech, Fontainebleau, F-77300 and 4INSERM, U830,
Paris, F-75248 France
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Extension 1: finding multiple change points shared by
several profiles
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Extension 1: finding multiple change points shared by

several profiles
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation U € RP*"
of Y as the solution of

p—1
min || Y — U]|[? such that 1(U1e # Ud) < k
UeRPX"H H ; ( i+1, 7é i, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...



Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢1/¢>-norm induces sparse solutions at the group level:

QgrOUp Z “ Wg||2

Q(wy, wa, W) = [|(wy, wa)|l2 + [[wal|2

— 2 2 2
—\/W1+W2+\/W3




GFLseg (Bleakley and V., 2011)

Replace

p—1
min | Y—U|? suchthat > 1(Uy1e# Uy) <k

UeRpxn —
by
p—1
min || Y — U2 such that Wil|Ui 1 e — Uil <
UGRPX"H H 121: IH i+1, i, || S

GFLseg = Group Fused Lasso segmentation



GFLseg (Bleakley and V., 2011)

Replace

p—1
i Y - U|J? h that 1 (U4 # Ul) <k
Jmin | I such tha ; (Uit1,0 # Uie) <

by

p—1

i ~U|? h N Uis1e — Uil <
ymin |V = UJ[ such that ;w,lUm,. Ul <

GFLseg = Group Fused Lasso segmentation

@ Practice: can we solve it efficiently?
@ Theory: does it recover the correct segmentation?




TV approximator implementation

p—1
min | Y —U|? such that Wi|Uis1.e — Ual <
UeRPX"H I ’Z; il Ui, ol < 1

The TV approximator can be solved efficiently:
@ approximately with the group LARS in O(npk) in time and O(np)
in memory
@ exactly with a block coordinate descent + active set method in
O(np) in memory




Speed trial

time (s)

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k£ = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.



Suppose a single change-point:
@ at position u = ap
@ with increments (5;)i—1, p S.t. % = liMy_00 2 377 52
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as
p increases?



Consistency of the weighted TV approximator

p—1
min || Y — U]|[? such that Wil|Uit1.e — Uiall <
UERPX,,H H 1221 /H i+1, i, || Y
Theorem

The weighted TV approximator with weights
Vi€[17p_1]7 Wi = M

correctly finds the first change-point with probability tending to 1 as
n — —+oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty



Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions © = 50 to v = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: u = 50+2 to u = 90 £ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.



Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian

noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.




Application: detection of frequent abnormalities
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Extension 2: Supervised classification of genomic
profiles

@ Xi,...,Xn € RP the n profiles of length p
@ yi,...,¥n € [—1,1] the labels
@ We want to learn a function f : R° — [—1,1]



Prior knowledge

We expect S to be
@ sparse : not all positions should be discriminative, and we want to
identify the predictive region (presence of oncogenes or tumor
suppressor genes?)
@ piecewise constant : within a selected region, all probes should
contribute equally

. l Ik
WWWWW Nt ™
) 500 1000 1500 2000 2 h 1




Fused lasso for supervised classification (Rapaport et

al., 2008)

n P p—1
mn> ¢(y.,87x)+ A ES) i1 — Bil -
SoRP — (}// B /) 1 ; |Bil 2 ; |Bir1 — Bil

where / is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).




Fused lasso for supervised classification (Rapaport et

al., 2008)

n P p—1
mn > ¢(yi,8"x)+ A Y 1 — Bil.
BERP — <y/ 6 I) 1 ; ’/3/‘ 2 ; ‘ﬂl-H ﬁ/‘

where / is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

Implementation

@ When 7 is the hinge loss (fused SVM), this is a linear program ->
upto p=10% ~ 10*

@ When 7 is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ~ 10°




Example: predicting metastasis in melanoma
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@ Introduction

e Learning with kernels

e Learning with sparsity

@ Learning molecular classifiers with network information (bis)



Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
@ Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge




Graph-based penalty

min R(5) + 2a(5)

Hypothesis

We would like to design penalties Qg(/5) to promote one of the
following hypothesis:

@ Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph

@ Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.




Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths.




Graph based penalty with kernels

Prior hypothesis
Genes near each other on the graph should have similar weigths

Network kernel (Rapaport et al., 2007)
Qspectral(ﬁ) = Z(B/ - 5/)2 )

inf

m|n R(B)+A> (B

IN]




Other penalties without kernels

@ Gene selection + Piecewise constant on the graph

QB)=> |8 - 6,!+ZIB,

IN]

@ Gene selection + smooth on the graph

QB)=>_ (Bi—B) +Z|,6’,

INj




How to select jointly genes belonging to predefined

pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢1/¢>-norm induces sparse solutions at the group level:

QgrOUp Z “ Wg||2

Q(wy, wo, wz) = [|(wq, we)l|2+||wsl|2




What if a gene belongs to several groups?

Issue of using the group-lasso
@ Qgroup(W) = > 4 || Wgl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
Gl
Cell 0
cycle
G2 G2
ior Wy [l2= I weg =0 >
R
A& //’3%:“‘% G3 0
Q{(\,p NS
& "%/;

Removal of any group
containing a gene = the
weight of the gene is 0.

IGF selection = selection of
unwanted groups



Latent group lasso (Jacob et al., 2009)

Introduce latent variables vg:
o
mmL W)+ 2 [lvgllz vi a o
9€g 3
w =[]+ v2 +
supp (vg) € g- ;03 ol v

Properties
@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.
@ Equivalent to group lasso when there is no overlap




A new norm

Overlap norm

min L(w) + A vl
geg .
W — deg Vg = mm|/n L( W) + AQoverlap(W)
supp (vg) C g.
with mvin Z [vgll2
geg
Qoverla,D(W) = W= deg Vg (*)
supp (vg) € 9.

Property

@ Qoveriap(W) is a norm of w.

@ Quvenap(.) associates to w a specific (not necessarily unique)
decomposition (vg)geg Which is the argmin of (x).




Overlap and group unity balls

05

05

Balls for Qg () (middle) and Q% .., (+) (right) for the groups

overlap
G ={{1,2},{2,3}} where ws is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.



Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that
W= Zg Vg and Qoverlap ( ) Z ” Vg||2
@ Consider the regularized empirical risk minimization problem
(W) + )‘Qoverlap (W)




Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that

W= ZQ Vg and Qoverlap( w) = > || Vgll2-
@ Consider the regularized empirical risk minimization problem

(W) + )‘Qoverlap (W)
Then
@ under appropriate mutual incoherence conditions on X,
@ as n— oo,
@ with very high probability,

the optimal solution W admits a unique decomposition (Vy)gecg such
that

{9 €610y #0} = {g € |7y #0}.




Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.
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Frequency of selection of each variable with the lasso (left) and nger,ap ()

(middle), comparison of the RMSE of both methods (right).




Graph lasso

Two solutions
/ntersectlon Z \/ 52 + 52 )

IN]

Qunion(B) = sup a'B.

a€RPVinj,[la?+af | <1




Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z A/ W,-2 =4 sz .
inj
constrains the sparsity, not the values

@ Graph kernel

Qqraph kernel (W) = Z(Wi - WI)2

i~f

constrains the values (smoothness), not the sparsity




Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 4 QgVERLAF‘ ()
ERROR 0.38 +0.04 0.36 +0.03
MEAN f PATH. 130 30

@ Graph on the genes.
METHOD 2 Qgrapn(-)
ERROR 0.39+0.04 0.36 +0.01

Av. SIZE c.C. 1.03 1.30




Lasso signature

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40  POLD1 — POLD4

RPLG \ /
\\EEFIAI
PCSK6 — BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT PDE6B  TGFB2
MYCBP GRP. DLEU2  ALDH3A2 ~ VEGFB  PSMD7  CXCLI3 FLT3 PPAT ULK1
SLC16A3  AKRIC4  BATF PLP2 SYTL2  CCNB2  SLC39A7  HYPK PDHB. UBD
FBXO2 E2F1 LRPS. PIK3CG  ZCCHC8 ~ NLRP2  ANKZF1  PRC1 cTsL2 TKL

PTPN3  CASC3  IGFBPS RTN3  DNAJB2  CDH19  GLRX2



raph Lasso signature
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