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Disease gene discovery  
in rare congenital disorders 
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•  Map chromosomal 
   abnormalities 
•  Improved diagnosis 
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Genetic diagnosis 

  Main medical goals 
  End diagnostic odyssey 
  Estimate risk for next pregnancy 
  Predict disease progression, life expectancy, etc. 

  Patient - deletion del(22)(q12.2) 
  Pulmonary valve stenosis 
  Cleft uvula 
  Mild dysmorphism 
  Mild learning difficulties 
  High myopia 
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Deletion del(22)(q12.2) 

  Deletion on Chromosome 22 
  ~0.8Mb 

  Deletion contains NF2 
  NF2 ↔ acoustic neurinomas 
  Benign tumor, BUT 

  Hard to diagnose 
  Severe complications 



Exome sequencing 

  Clinical sequencing of whole genomes is around the corner 
  But data will be hard to interpret 

  Exome sequencing 
  Routine clinical use has started 
  More conserved, fewer mutations, easier to interpret 

  Some mutations are easy to interpret, but in most cases it will 
still be hard to identify which mutation causes disease 
  Can variants be prioritized? 
  Existing tools for variant deleteriousness prediction (SIFT, 

Polyphen, MutationTaster etc.) fall short 
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Exome sequencing and gene prioritization 
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Erlich, Y. et al. Exome sequencing and disease-
network analysis of a single family implicate a 
mutation in KIF1A in hereditary spastic 
paraparesis. Genome Res. 21, 658–664 (2011). 



Candidate gene prioritization 
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GWAS – SNPs 
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Candidate prioritization 
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Prioritization by example 

  Known/training genes 
  Type 2 diabetes: 21 known genes in OMIM, 118 known 

genes in GAD 
  Manually curated gene set from Elbers et al., 2007 

  ACDC, ADRA2A, ADRA2B, ADRB1, ADRB2, ADRB3, LEP, 
LEPR, NR3C1, UCP1, UCP2, UCP3, PPARG, KCNJ11, TCF7L2 

  Candidate/test genes 
  Prioritizations of a known region (from Elbers et al., 2007) 

  12q24: 327 candidates 

9 



Region 12q24: 327 candidates 
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Responsible for MODY, an uncommon monogenetic form of 
early onset T2D. 

McCarthy et al. (2006), Cohen et al. (2006), Perez-Martinez et al. (2005)‏ 

NCOR2 has an important role in the adipocyte by inhibiting 
adipocyte differentiation via repression of PPAR-g activity. 

Key component in the reverse cholesterol transport pathway. 
Genetically associated with differences in insulin sensitivity  
in healthy subjects 



Profiling known genes (Gene Ontology) 

  A term is over-represented if its frequency inside the training set 
is significantly larger than its frequency over the genome 
  E.g., Gene Ontology, Interpro, KEGG 
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Scoring derived from  
Fisher's omnibus statistic 
•  S = -2 Σi log pi 
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Data fusion with order statistics 
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Aerts et al. Nature Biotech. 2006 
www.esat.kuleuven.be/endeavour!

Endeavour 



Endeavour 
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http://www.esat.kuleuven.ac.be/endeavour 

  Multiple species: 
  Human, mouse, rat, fly, worm 

  Integration across species will  
  soon be supported 



Prioritization for a monogenic disorder 
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A novel locus for congenital heart 
defect on chromosome 6q24-25 
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Translocation t(2;6)(q21;q25) 
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Zebrafish morpholino knock-down 
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Mutation sequencing 

  Sequencing of TAB2 in 270 CHD patients  
revealed 2 missense mutations 
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Kernel methods for genomic data fusion 
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Kernel-based genomic data fusion	
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Kernel matrix  
~ nonlinear extension of covariance/correlation matrix 

Instead of using original data directly, use kernel matrix only 
 (Think of hierarchical clustering.) 

Advantage 1: kernel matrices form a single type of object, 
regardless of the heterogeneity of the original data types 

Advantage 2: all machine learning methods can be applied to 
kernels (classification, clustering, prioritization, ranking, etc.)  



Kernel data fusion (a.k.a. MKL) 
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Prioritization by novelty detection 



One-class support vector machine	




Kernel fusion for novelty detection 

K = µ1K1 + µ2K2	
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Kernel fusion in one-class SVM	


      -norm kernel fusion (De Bie et al., 2007) 

     -norm kernel fusion (Yu et al., 2009) 



L2 vs. L∞ kernel fusion  



A framework for kernel data fusion 

28 



Kernel data fusion 
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ETkL: Extract, Transform, Kernelize, Learn 

  Systematic multi-tier framework for data integration 
  Resembles multi-tier architecture of complex IT systems and 

Extract-Transform-Load methodology of datawarehousing 
1.  Database / web service sources 
2.  Data reconciliation, cleaning, and warehousing, etc. 
3.  Scaling, normalization, feature selection, etc. 
4.  Computation and storage of kernels 
5.  Learning 

  May require feedback loops  (e.g., feature selection) 

  Scale up to large, heterogeneous databases 
  20,000 x 20,000 kernel matrices are ugly animals 
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Handling large kernel matrices 

  One way to handle large kernel matrices is via low-
rank approximations 
  Store r x n instead of n x n 

  Cholesky decomposition 
  K symmetric positive definite 
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Incomplete Cholesky decomposition 

  Incomplete Cholesky 
  K symmetric positive semidefinite 
  Limit to rank r ≤ rank(K) 
  Add pivoting to capture more informative rows/columns first 
  Limit information loss to e.g. 5% 
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The No-Voodoo principle 

  Given a data matrix D for a learning problem, the no voodoo principle states 
that, in the absence of prior knowledge or arbitrary assumptions, no information 
can be extracted about the problem except the information provided by the data 
matrix 

  In particular, no information can be created that wasn’t initially present in 
the data 

  No amount of bagging, random projection, nonlinear high-dimensional 
feature map, etc. can extract information that was not present in the 
data (except through the implicit or explicit injection of constraints into 
the problem) 

  If two frameworks represent data in ways that are related in a one-to-one 
fashion, there is nothing that prevents the development of methods with 
identical accuracy (e.g., random projections vs. spectral methods) 

  If one method outperforms another on a given problem (remember the no 
free lunch theorem), it is because the methods are more or less efficient (in 
particular, in terms of generalization performance vs. retrospective 
accuracy) at capturing the available information or because the methods 
incorporate explicit or implicit constraints that are more or less relevant to 
the given learning task  
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  About 2,000 rare coding variants per patient 
  About 5 de novo coding variants per patient 

  Tractable by filtering 
  Loss-of-function (truncating, splice site) mutations 
  Two patients with de novo variants in same gene 
  Recessive mutations in inbred families 
  Multiple patients with rare variants in the same gene (association) 

  Challenging 
  What about locus heterogeneity? 
  What about compound heterozygotes? 
  What about oligogenic disorders? 

 Need to prioritize variants 

Challenges 



Variant prioritization 

  Variant and basepair level 
  Structural change: change from one nucleotide to the another will 

change the amino-acid encoded at that position, which will change 
the structure of the protein and thus its function 

  Association: variant is present more often in patients than controls 
  Conservation: position at which the variant is found is highly 

conversed across species and evolution is apparently reluctant to 
see this position changed 

  Gene level 
  Haploinsufficiency: gene in which the variant is found is putatively 

haploinsufficient 
  Gene prioritization: gene in which the variant is found is known to 

be involved or is putatively involved in the phenotype of interest 

  Locus level 
  Locus mapping: region of the genome in which variant is found is 

associated (CNV, association, linkage) with phenotype of interest 
36 



Variant prioritization 
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Variant prioritization 

How do you integrate predictions  
at different resolutions? 



Machine 
learning 

Gene information 

Variant 
information 

Phenotype 
information 

homes.esat.kuleuven.be/~bioiuser/eXtasy/ !



  HGMD: 24,454 variants in 1,142 HPO terms 
  HGMD terms mapped to HPO 
  At least three genes for training of Endeavour 

  Control sets (sampled 500/phenotype): 
  Polymorphisms: MAF > 1%, 1000G, 43,724 variants 
  Rare 

  MAF < 1%, 1000G, 43,724 variants 
  In-house, > 20X coverage, 257, 556 variants 

  Scores from different sources mapped directly from highest to 
lowest level 

  Existing method perform poorly on rare a priori benign variants 
vs. polymorphisms 

Data sets 



Polyphen2 



SIFT 



MutationTaster 



  Previous methods trained to distinguish disease-causing variants 
from common SNPs, not rare variants 

  “Deleterious” variant = variant that affects gene function 
  Deleterious variants may not be disease causing 
  “Mildly deleterious” – Kryukov et al. (2007) 
  “Accelerated population growth and weak purifying selection” – 

Tennessen et al. (2012) 

  Bad training sets? 
  What if they are deleterious but not specific for our desired 

phenotype? 

Where is the problem? 
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Random forests 

•  Stable 
•  Fast 
•  Semi-interpretable 



Po
ly

m
or

ph
is

m
s 

R
ar

e 
va

ria
nt

s 



Temporal stratification 





  Data sets are biased 
  Benchmark on known mutations 
  Retrospective benchmarks are overoptimistic! 

  High proportion of negative variants 
  Despite good discrimination, still lots of false positives 

What’s the catch? 



homes.esat.kuleuven.be/~bioiuser/eXtasy/ !



Conclusions and perspectives 

  Genomic data fusion for disease gene prioritization 
  Kernel methods for genomic data fusion 
  Extract, Transform, kernelize & Learn 

  Phenotype information improves variant prioritization 
  Importance of reference data 

  Common SNPs 
  Rare a priori benign variants 
  Common and rare variants from local population 

  Scoring for multiple phenotypes 
  Further integration with locus info (GWAS, CNV) 
  Further integration with variant association scoring 

  Scoring other mutations (synonymous, indels, noncoding)!
homes.esat.kuleuven.be/~bioiuser/eXtasy/ !
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