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What’s Changed (Changing) for Medicine?

» Modern data availability.
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Abstract

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian pro (GP)
models to data sets containing millions of
data points. We show how GPs (.dll be vari-
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of Sheffield

Even to accommodate these data sets, various approx-
imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approx\manon
to the covariance matrix based around ‘inducing v:
ables [see e.g. Csaté and Opper, 2002, Seeger et al.,
2003, Quinonero Candela and Ra ssen, 2005, Tit-



http://auai.org/uai2013/prints/papers/244.pdf
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Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75.000 entries.

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.
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What'’s Changed (Changing) for Medicine?

» Try Googling for: “patient data ”...
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http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf

A brief history of registration

The early days

Prior to the appearance of the first railways in Britain, there was a brief development and interest
in steam powered road going vehicles. In 1834, a Mr Hancock started a steam coach called the
“Era”, carrying up to 14 passengers from Paddington to Regents Park and the City at 6d a head.
And in the following year, a Mr Church built an omnibus capable of carrying 40 passengers for
the London and Birmingham Steam Carriage Company.

However, the success of the railway movement drove all such traffic off the roads.

A Parliamentary Commission of Enquiry in 1836 reported “strongly in favour of steam
carriages on roads”, but subsequent Acts of Parliament tended to have a discouraging and
restrictive effect. The Locomotive Act 1861 limited the weight of steam engines to 12 tons
and imposed a speed limit of 10 mph.

The Locomotive Act 1865 set a speed limit of 4 mph in the country and 2 mph in towns.
The 1865 Act also provided for the famous “man with a red flag”. Walking 60 yards ahead
of each vehicle, a man with a red flag or lantern enforced a walking pace, and warned horse
riders and horse drawn traffic of the approach of a self propelled machine.

The Locomotive Amendment Act 1878 made the red flag optional under local regulations, and


http://www.direct.gov.uk/prod_consum_dg/groups/dg_digitalassets/@dg/@en/@motor/documents/digitalasset/dg_180212.pdf
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http://en.wikipedia.org/wiki/File:Modern_Beijing_Traffic.jpg

What'’s Changed (Changing) for Medicine?

» Genotyping.

» Epigenotyping.
» Transcriptome: detailed characterization of phenotype.
» Stratification of data.



Open Data

» Automatic data curation: from curated data to curation of
publicly available data.

» Open Data: http://www.openstreetmap.org/?lat=53.
38086&1lon=-1.48545&zoom=17&layers=NM.


http://www.openstreetmap.org/?lat=53.38086&lon=-1.48545&zoom=17&layers=M
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Data Sources

» UK Goverment Stipulation on Data Availability Telegraph
Article

» Patient Access:
http://www.patient.co.uk/patient-access.asp

» The midata project: Tescos, T-mobile ...

» A social network for personal health?? e.g. EMIS
myHealth


http://www.telegraph.co.uk/health/healthnews/9673802/Patients-will-view-their-NHS-records-online-in-three-years.html
http://www.telegraph.co.uk/health/healthnews/9673802/Patients-will-view-their-NHS-records-online-in-three-years.html
https://patient.uservoice.com/knowledgebase/articles/214226-how-do-i-view-my-medical-record-
https://www.gov.uk/government/policies/providing-better-information-and-protection-for-consumers/supporting-pages/personal-data
https://myhealth.patient.co.uk/
https://myhealth.patient.co.uk/
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Missing Data

» If missing at random it can be marginalized.

» As data sets become very large (39 million in EMIS) data
becomes extremely sparse.

» Imputation becomes impractical.



Imputation

» Expectation Maximization (EM) is gold standard
imputation algorithm.
» Exact EM optimizes the log likelihood.

» Approximate EM optimizes a lower bound on log
likelihood.

» e.g. variational approximations (VIBES, Infer.net).

» Convergence is guaranteed to a local maxima in log
likelihood.



Expectation Maximization

Require: An initial guess for missing data
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Update model parameters (M-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters

Update guess of missing data (M-step)

(E-step)



Expectation Maximization

Require: An initial guess for missing data
repeat
Update model parameters
Update guess of missing data
until convergence

(M-step)
(E-step)



Imputation is Impractical

\4

In very sparse data imputation is impractical.

v

EMIS: 39 million patients, thousands of tests.

v

For most people, most tests are missing.

v

M-step becomes confused by poor imputation.



Direct Marginalization is the Answer

» Perhaps we need joint distribution of two test outcomes,

P(ylx ]/2)

» Obtained through marginalizing over all missing data,

P(]/ll ]/2) = fp(]/lz yZI ]/3, ey yp)dy3/ .. dyp

» Where y3, ..., Yy, contains:

1. all tests not applied to this patient
2. all tests not yet invented!!



Magical Marginalization in Gaussians

Multi-variate Gaussians

» Given 10 dimensional multivariate Gaussian, y ~ N (0, C).
» Generate a single correlated sample 'y = [y1,y2 ... y10]-.

» How do we find the marginal distribution of y1, y»?



Gaussian Marginalization Property
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Figure: A sample from a 10 dimensional correlated Gaussian
distribution.
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Gaussian Marginalization Property
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Gaussian Marginalization Property

(a) A 10 dimensional sample
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Figure: A sample from a 10 dimensional correlated Gaussian

distribution.



Gaussian Marginalization Property

(a) A 10 dimensional sample

1 0.96793

0.96793 1

(b) correlation between y; and .

Figure: A sample from a 10 dimensional correlated Gaussian

distribution.



Rogers and Girolami
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Regression



Regression Examples

\4

Predict a real value, y; given some inputs x;.

\4

Predict quality of meat given spectral measurements
(Tecator data).

Radiocarbon dating, the C14 calibration curve: predict age
given quantity of C14 isotope.

v

v

Predict quality of different Go or Backgammon moves
given expert rated training data.



Olympic Marathon Data

» Gold medal times for
Olympic Marathon since
1896.

» Marathons before 1924
didn’t have a
standardised distance.

» Present results using
pace per km.

» In 1904 Marathon was
badly organised leading
to very slow times.

Image from Wikimedia
Commons
http://bit.1ly/16kMKHQ
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Olympic Marathon Data
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What is Machine Learning?

data

» data: observations, could be actively or passively acquired
(meta-data).
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What is Machine Learning?
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» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.



What is Machine Learning?

data + model = prediction

» data: observations, could be actively or passively acquired
(meta-data).

» model: assumptions, based on previous experience (other
data! transfer learning etc), or beliefs about the regularities
of the universe. Inductive bias.

» prediction: an action to be taken or a categorization or a
quality score.



Regression: Linear Releationship

y=mx+c

» y: winning time/pace.
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Regression: Linear Releationship

y=mx+c

» y: winning time/pace.

v

: year of Olympics.

v

m: rate of improvement over time.

» c: winning time at year 0.



Two Simultaneous Equations

A system of two simultaneous 5,
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Two Simultaneous Equations

A system of two simultaneous
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Two Simultaneous Equations

A system of two simultaneous 5,
equations with two unknowns. 5
£
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Two Simultaneous Equations

How do we deal with three
simultaneous equations with

only two unknowns?

Y1 =mxy +c¢
Yo =Mmxy +C
Y3 =mx3 + ¢

time in min/km, y

a1

I

w

X

— Xy — X ’\
| | | |

1900 1940 1980 2020

year, x



Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C
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Overdetermined System

» With two unknowns and two observations:

Y1 =mx1 +c¢

Yo =mXy +C

» Additional observation leads to overdetermined system.

Y3 =mx3+¢

» This problem is solved through a noise model € ~ N (0, 02)

Y1 =mxy +Cc+e€
Yo =MmMxy +C+ €
Y3 =mx3 +Cc+e€3



Noise Models

» We aren’t modeling entire system.
» Noise model gives mismatch between model and data.

» Gaussian model justified by appeal to central limit
theorem.

» Other models also possible (Student-t for heavy tails).

» Maximum likelihood with Gaussian noise leads to least
squares.



y=mx+c
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i y=mx+c







y = mx +c
pointl: x=1,y=3
3=m+c
point2: x =3,y =1
1=3m+c
point3: x =2,y =25
25=2m+c



y=mx+c+e

pointl: x=1,y=3
3=m+c+ €

point2: x =3,y =1
1=3m+c+e

point3: x =2,y =25

25=2m+c+e€3



The Gaussian Density

» Perhaps the most common probability density.

o 1 -
p(y“lla)_ Wexp 202
= N (yl, %)

» The Gaussian density.



Gaussian Density

p(hly, o?)

0 | \
0 1 2

h, height/m

The Gaussian PDF with u = 1.7 and variance 6> = 0.0225. Mean
shown as red line. It could represent the heights of a
population of students.



Gaussian Density

1 (y — w)?
b el 452)

o2 is the variance of the density and u is
the mean.



Two Important Gaussian Properties

Sum of Gaussians

» Sum of Gaussian variables is also Gaussian.

vi~ N (i, 0?)



Two Important Gaussian Properties

Sum of Gaussians
» Sum of Gaussian variables is also Gaussian.

i~ N (i, )

And the sum is distributed as

i]/i NN{iHh " 012]
i=1 i=1

i=1
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YL Lo
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(Aside: As sum increases, sum of non-Gaussian, finite
variance variables is also Gaussian [central limit theorem].)
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Two Important Gaussian Properties

Scaling a Gaussian

» Scaling a Gaussian leads to a Gaussian.
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Two Important Gaussian Properties

Scaling a Gaussian
» Scaling a Gaussian leads to a Gaussian.
y~N(p0?)
And the scaled density is distributed as

wy ~ N(wy, wzoz)



A Probabilistic Process

» Set the mean of Gaussian to be a function.

exp[_w),

p (yilx;) = i 252

» This gives us a ‘noisy function’.

» This is known as a process.



Height as a Function of Weight

\4

In the standard Gaussian, parametized by mean and
variance.

v

Make the mean a linear function of an input.

v

This leads to a regression model.

vi =f (xi) + €,
€ ~N (O, 02).

» Assume y; is height and x; is weight.



Linear Function

2 L data points ~ x
best fit line

\ \ \ \ |
50 60 70 80 90 100

A linear regression between x and y.



Data Point Likelihood

» Likelihood of an individual data point

1 (y; — mx; — c)*
p (yilxi, m,c) = P2 exp( 252 :

» Parameters are gradient, m, offset, c of the function and

noise variance o2.



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).
» For independent variables:

py) = [ [ pw)
i=1



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).
» For independent variables:

p(ylx, m,c) = HP(yilxi, m,c)
i=1



Data Set Likelihood

» If the noise, €; is sampled independently for each data
point.

» Each data point is independent (given m and c).

exp (——(yi i C)Z] .

202

» For independent variables:

plylx,m,c) = H W



Data Set Likelihood

» If the noise, €; is sampled independently for each data

point.
» Each data point is independent (given m and c).

» For independent variables:
I (i —mxi = o)

exp 252

n
2

Py ) = (2mo?)



Log Likelihood Function

» Normally work with the log likelihood:

" (v — mxi — c)?
L(m,¢,0%) = ~Z log 2 - = loga® = ) | %
i=1



Consistency of Maximum Likelihood

» If data was really generated according to probability we
specified.
» Correct parameters will be recovered in limit as n — co.

» This can be proven through sample based approximations
(law of large numbers) of “KL divergences”.

» Mainstay of classical statistics.



Probabilistic Interpretation of the Error Function

\4

Probabilistic Interpretation for Error Function is Negative
Log Likelihood.

Minimizing error function is equivalent to maximizing log
likelihood.

» Maximizing log likelihood is equivalent to maximizing the
likelihood because log is monotonic.

v

\4

Probabilistic interpretation: Minimizing error function is
equivalent to maximum likelihood with respect to
parameters.



Error Function

» Negative log likelihood is the error function leading to an
error function

E(m, ca)——loga iy ZZ(% mx; — c)°.

» Learning proceeds by minimizing this error function for
the data set provided.



Connection: Sum of Squares Error

» Ignoring terms which don’t depend on m and c gives

E(m,c) «< Z(yi — f(xi)?
i=1

where f(x;) = mx; +c.
» This is known as the sum of squares error function.

» Commonly used and is closely associated with the
Gaussian likelihood.



Linear Function

x data points  x
best fit line

¥, pace min/km

1900 1920 1940 1960 1980 2000 2020
x, year

Linear regression for Male Olympics Marathon Gold Medal
times.



Reading

» Section 1.2.5 of Bishop up to equation 1.65.

» Section 1.1-1.2 of Rogers and Girolami for fitting linear
models.



Multi-dimensional Inputs

\4

Multivariate functions involve more than one input.

\4

Height might be a function of weight and gender.

\4

There could be other contributory factors.

v

Place these factors in a feature vector x;.

v

Linear function is now defined as

q
f(xi) = Z wiXi,j +C
j=1



Vector Notation

mo

» Write in vector notation,
fx)=w'x;+c

» Can absorb c into w by assuming extra input xo which is
always 1.
fxi) = w'x;



Log Likelihood for Multivariate Regression

» The likelihood of a single data point is

1x;) = 1 (vi — WTXi)Z
p (yl Xi) = \/2717 exp 20_2 .

» Leading to a log likelihood for the data set of

Z?:l (vi — WTXi)Z
202 ’

L(w,0%) = Jz logo? - z log 27t —
2 2
» And a corresponding error function of

Z?:l (vi — WTXi)2
252 '

E(w,0?) = glog 0% +



Expand the Brackets

E(w,d?) :g log o2 + Z Yi — Z Yiw ' X;

Z w' xzx W + const.



Multivariate Derivatives

» We will need some multivariate calculus.

» For now some simple multivariate differentiation:

da™w
dw -a
and dwT A
w Aw T
T—(A-i-A )W

or if A is symmetric (i.e. A = AT)

dwT Aw

=2Aw.
dw W



Differentiate

Differentiating with respect to the vector w we obtain

aL(w ﬁ)_ﬁzx% [Z }w

Leading to

n -1 4
W = [Z xixl—.r] Z XiYi,

i=1 i=1
Rewrite in matrix notation:



Update Equations

» Update for w".
-1
w' =(X"X) Xy
» The equation for 6" may also be found

C T (mwT x))

(72

n



Reading

» Section 1.3 of Rogers and Girolami for Matrix & Vector
Review.



Basis Functions

Nonlinear Regression

» Problem with Linear Regression—x may not be linearly
related to y.

» Potential solution: create a feature space: define ¢(x)
where ¢(-) is a nonlinear function of x.

» Model for target is a linear combination of these nonlinear
functions

K
f69 =) w0 (1)
j=1



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:

[1,x,%°]
2 _
P(x) =1
]_ L
2 0l
<
1k
2 \ \ \
1 1
X

Figure: A quadratic basis.



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:

[l,x,xz]
2 _
=1
1L P(x)
= ol
5
10 P(x) =x
-2 \ \ !
-1 1
X

Figure: A quadratic basis.



Quadratic Basis

» Basis functions can be global. E.g. quadratic basis:

[1,x,2%]

Figure: A quadratic basis.



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?

3 -
2 L
1L
s O
=1k
2L
3L

_4 | | |

-1 0 1

X

Figure: Function from quadratic basis with weights w; = 0.87466,
wy, = —0.38835, w3 = —2.0058 .



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?
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Figure: Function from quadratic basis with weights w; = —0.35908,
wy = 1.2274, w3 = —0.32825 .



Functions Derived from Quadratic Basis

f(x) = wy + wox + wsx?

= N
~ -1+
2L
3L
_4 | | |
-1 0 1
X

Figure: Function from quadratic basis with weights w; = —1.5638,
wy, = —0.73577, w3 = 1.6861 .



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )

P(x)

(Pl(x = 2(x+1)2

-2 -1 0 1 2
x

Figure: Radial basis functions.



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )

Pa(x) = 2

P(x)

qbl(x = 2(x+1)2

-2 -1 0 1 2
x

Figure: Radial basis functions.



Radial Basis Functions

» Or they can be local. E.g. radial (or Gaussian) basis

$;(x) = exp( (x— #;) )

po(x) = 2

P(x)

2(x+1)2
qbl(x =e ¢3(x) — e—Z(Jc—l)2
| | | |

-2 -1 0 1 2

X

Figure: Radial basis functions.



Functions Derived from Radial Basis

. 2 2 _ _1)\2
F(x) = wie 2D 4 wpe™? + wsem 2D

3 2 -1 0 1 2 3
X

Figure: Function from radial basis with weights w; = —0.47518,
wy = —0.18924, w3 = —1.8183 .



Functions Derived from Radial Basis

. 2 2 _ _1)\2
F(x) = wie 2D 4 wpe™? + wsem 2D

3 2 -1 0 1 2 3
X

Figure: Function from radial basis with weights w; = 0.50596,
wy, = —0.046315, w3 = 0.26813 .



Functions Derived from Radial Basis

. 2 2 _ _1)\2
F(x) = wie 2D 4 wpe™? + wsem 2D

3 2 -1 0 1 2 3
X

Figure: Function from radial basis with weights w; = 0.07179,
wy = 1.3591, ws = 0.50604 .



Reading

» Chapter 1, pg 1-6 of Bishop.
» Section 1.4 of Rogers and Girolami.

» Chapter 3, Section 3.1 of Bishop up to pg 143.



Polynomial Fits to Olympics Data

55 0~

B X _5 £
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Left: fit to data, Right: model error. Polynomial order 0, model
error -3.3989, 0> = 0.286, o = 0.535.
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Left: fit to data, Right: model error. Polynomial order 1, model
error -21.772, 62 = 0.0733, 0 = 0.271.
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Left: fit to data, Right: model error. Polynomial order 2, model
error -29.101, 02 = 0.0426, 0 = 0.206.
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Left: fit to data, Right: model error. Polynomial order 3, model
error -29.907, 02 = 0.0401, ¢ = 0.200.
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Left: fit to data, Right: model error. Polynomial order 4, model
error -29.943, 02 = 0.0400, ¢ = 0.200.
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Left: fit to data, Right: model error. Polynomial order 5, model
error -30.056, 0 = 0.0397, o = 0.199.
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Left: fit to data, Right: model error. Polynomial order 6, model
error -32.866, 0> = 0.0322, 0 = 0.180.



Overfitting

» Increase number of basis functions, we obtain a better ‘“fit’
to the data.

» How will the model perform on previously unseen data?



Training and Test Sets

» We call the data used for fitting the model the ‘training set’.

» Data not used for training, but when the model is applied
‘in the field” is called the “test data’.

» Challenge for generalization is to ensure a good
performance on test data given only training data.
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Left: fit to data, Right: model error. Polynomial order 0, training
error -1.8774, validation error -0.13132, 6% = 0.302, ¢ = 0.549.
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Left: fit to data, Right: model error. Polynomial order 1, training
error -15.325, validation error 2.5863, 6% = 0.0733, ¢ = 0.271.
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Left: fit to data, Right: model error. Polynomial order 2, training
error -17.579, validation error -8.4831, % = 0.0578, ¢ = 0.240.
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Left: fit to data, Right: model error. Polynomial order 3, training
error -18.064, validation error 11.27, 6% = 0.0549, ¢ = 0.234.
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Left: fit to data, Right: model error. Polynomial order 4, training
error -18.245, validation error 232.92, 6% = 0.0539, ¢ = 0.232.
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Left: fit to data, Right: model error. Polynomial order 5, training
error -20.471, validation error 9898.1, 6% = 0.0426, ¢ = 0.207.
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Left: fit to data, Right: model error. Polynomial order 6, training
error -22.881, validation error 67775, 6% = 0.0331, ¢ = 0.182.



Leave One Out Error

v

Take training set and remove one point.

v

Train on the remaining data.

v

Compute the error on the point you removed (which
wasn’t in the training data).

v

Do this for each point in the training set in turn.

v

Average the resulting error. This is the leave one out error.
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25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 1, training error -21.183, leave one out error
-0.15413.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
51 15 -
45 |- 1
4 0.5 -
35 |- 0%
3 05 |-
2.5 | | | | -1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 - 2 -
5L 7 15 -
45 1+
4+ 3 05 -
35 ™ 0x
3 - 0.5 -
2.5 | | | | -1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
50 ° 15 -
45 | 10
4 05 |-
35 | 0%
3L 05
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 4567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -
5L 7 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 2, training error -28.403, leave one out error
0.34669.



Leave One Out Error

55 2 -

5+ 1.5 +

45 + 1 -

4 + 0.5

X
35 0 *
X

3+ -05 -
25 L1 \ \ \ -1 Ly
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -

5+ 1.5 +

45 + 1 -

4 + 0.5

X
35 0 *
X

3+ -05 -
25 L1 \ \ \ -1 Ly
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
50 7 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
507 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5007 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
507 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5007 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5007 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5007 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 3, training error -29.223, leave one out error
0.51621.



Leave One Out Error

55 2 -
5+ 1.5 +
45 + 1 -
4 + 0.5 x
X
35 0 *
X
3+ -05 -
25 L1 \ \ \ -1 Ly
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
5+ 1.5 +
45 + 1 -
4 + 0.5 x
X
35 0 *
X
3+ -05 -
25 L1 \ \ \ -1 Ly
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 7 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50, 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50,0 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
5000 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50, 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
500 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50, 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50, 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -
50 15 |-
45 - 10
4 05 x
X
35 0%
X
3 05 -
25 | | | | _1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 — 2 -

5L~ 15 |-
45 1 - )

4 L 05 L x

X
35 0 x
X

3L 05 -

25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 456 7

polynomial order

Polynomial order 4, training error -29.324, leave one out error
0.84844.



Leave One Out Error

55 2 -

51 15 -
45 |- 1 §

4 0.5 - x

X
35 |- 0%
X

3 05 |-

2.5 | | | | -1 | | | | | | |
1892 1932 1972 2012 01234567

polynomial order

Polynomial order 5, training error -29.524, leave one out error
1.48.



Leave One Out Error

55 — 2 -

5 F 15 |-
45 1 - )

4 L 05 L x

X
35 0 x
X

3L 05 -

25 | | | | _1 | | | | | | |
1892 1932 1972 2012 0123 456 7

polynomial order
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k Fold Cross Validation

» Leave one out cross validation can be very time
consuming!

» Need to train your algorithm n times.

» An alternative: k fold cross validation.
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Underdetermined System

What about two unknowns and
one observation?

Y1 =mxy1 +¢

O R, N W k= O




Underdetermined System

Can compute m given c.

1—¢C
m=J1"°¢
X

O R, N W k= O




Underdetermined System

Can compute m given c.

c=175=m =125

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0777 = m =378

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-401=m=7.01

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-0718 = m =372

O R, N W k= O




Underdetermined System

Can compute m given c.

c=245=m =0.545

O R, N W k= O




Underdetermined System

Can compute m given c.

¢ =-0.657 = m = 3.66

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-313=m=6.13

O R, N W k= O




Underdetermined System

Can compute m given c.

c=-147 = m =447

O R, N W k= O




Underdetermined System

Can compute m given c.
Assume

c~ N(Ol4)l

we find a distribution of solu-
tions.




Probability for Under- and Overdetermined

» To deal with overdetermined introduced probability
distribution for ‘variable’, €;.

» For underdetermined system introduced probability
distribution for “‘parameter’, c.

» This is known as a Bayesian treatment.



Reading

» Bishop Section 1.2.3 (pg 21-24).

» Bishop Section 1.2.6 (start from just past eq 1.64 pg 30-32).

» Rogers and Girolami use an example of a coin toss for
introducing Bayesian inference Chapter 3, Sections 3.1-3.4
(pg 95-117). Although you also need the beta density
which we haven't yet discussed. This is also the example
that Laplace used.



Prior Distribution

» Bayesian inference requires a prior on the parameters.
» The prior represents your belief before you see the data of
the likely value of the parameters.

» For linear regression, consider a Gaussian prior on the
intercept:
c~N(O,a1)



Posterior Distribution

» Posterior distribution is found by combining the prior with
the likelihood.

» Posterior distribution is your belief after you see the data of
the likely value of the parameters.

» The posterior is found through Bayes” Rule

p(ylo)p(c)

plcly) = oY)



Bayes Update

2 p(c) = N (clp, ar)

0 | | | |
-3 -2 -1 0 1 2 3 4

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Bayes Update

p(c) =N (c

p(ylm,c,x,0*) = N

1D, 1)

ylmx + ¢, 02)

0 |
-3 -2

-1

0

1

2 3

4

Figure: A Gaussian prior combines with a Gaussian likelihood for a

Gaussian posterior.



Bayes Update

2 p(c) = N (clp, ar)

p(ylm,c, x, ) =N ylmx +c, 02)

1r plcly, m, x,¢%) =
N (i 07+ a7h)™)
0 | ‘ | \

-3 -2 -1 0 1 2 3 4

Figure: A Gaussian prior combines with a Gaussian likelihood for a
Gaussian posterior.



Stages to Derivation of the Posterior

» Multiply likelihood by prior
» they are “exponentiated quadratics”, the answer is always
also an exponentiated quadratic because
exp(a?) exp(b?) = exp(a® + b?).
» Complete the square to get the resulting density in the
form of a Gaussian.

» Recognise the mean and (co)variance of the Gaussian. This
is the estimate of the posterior.



Multivariate Prior Distributions

» For general Bayesian inference need multivariate priors.

» E.g. for multivariate linear regression:

yi = Z Wixij+ €;
i
(where we’ve dropped ¢ for convenience), we need a prior

over w.

» This motivates a multivariate Gaussian density.



Multivariate Prior Distributions

» For general Bayesian inference need multivariate priors.

» E.g. for multivariate linear regression:

Vi=W' Xi +€

(where we’ve dropped ¢ for convenience), we need a prior
over w.

» This motivates a multivariate Gaussian density.



Two Dimensional Gaussian

» Consider height, h/m and weight, w/kg.

» Could sample height from a distribution:
p(h) ~ N (1.7,0.0225)
» And similarly weight:

p(w) ~ N (75, 36)



Height and Weight Models

p(h)
p(w)

h/m w/kg

Gaussian distributions for height and weight.



Sampling Two Dimensional Variables

Marginal Distributions

Joint Distribution
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Independence Assumption

» This assumes height and weight are independent.

p(h, w) = p(h)p(w)

> In reality they are dependent (body mass index) = ;5.
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Independent Gaussians

p(w, h) = p(w)p(h)



Independent Gaussians

p(w, h) = S S exp (—1 [(w ~ )’ + (h — p2)? )]
)= 2
2710% A\ /2710% 2 o} o

1 2



Independent Gaussians




Independent Gaussians

1 1 e
PY) = 5 P (-5 - 0Dy - )



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) = exp (—%(y —p)' DNy - y))

2r|DJ2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

py) = — T exp (—1(RTy -R"w) D'RTy - RT#))
21 |D|? 2



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

p(y) = exp (—%(y - RD'R"(y - #))

2 |DJz

this gives a covariance matrix:

C!1=RDIR”



Correlated Gaussian

Form correlated from original by rotating the data space using
matrix R.

ply) = exp (—%(y —wTC iy - P))

27 |Cl2

this gives a covariance matrix:

C=RDR'



Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.

vi ~ N (i, 07)
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui07)

iyi~N[iHh ” ‘712]
i=1

i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.



Recall Univariate Gaussian Properties
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vi~ N (ui07)
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Recall Univariate Gaussian Properties

1. Sum of Gaussian variables is also Gaussian.
vi~ N (ui07)

iyi NN[in’f ” ‘712]
i=1 i=1 i=1

2. Scaling a Gaussian leads to a Gaussian.

y~N (g, 0%)

wy ~ N(wy, wzoz)



Multivariate Consequence

> If
x~N(y,Z)



Multivariate Consequence

> If

» And



Multivariate Consequence

> If
x~N(y,Z)

» And
y = Wx

» Then
y~ N (W, WEWT)



Multivariate Regression Likelihood

» Noise corrupted data point

Yy = WTXZ',; +€;



Multivariate Regression Likelihood

» Noise corrupted data point

Vi=W'X;; +6€

» Multivariate regression likelihood:

1 1 ¢« 2
p(ylX,w) = ———exp|-=— Yi— WX,
@roty? | 207 £ (v ‘)



Multivariate Regression Likelihood

» Noise corrupted data point

Yi= WX, + €

» Multivariate regression likelihood:

n

i=1

1 1
pylX, w) = o2y P [—@ 2 (i

» Now use a multivariate Gaussian prior:

1
p(w) = exp (——wTw
(27wz)g 2a



Polynomial Fits to Olympics Data

55 5 75 |
5 L
45 | 70 |-
4L % 65 |-
% X X
35 |- T 60 -
3 L XK o 55 L
25 L \ \ \ L
1892 1932 1972 2012 01 2 3 4 5 6

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 0, model error 29.757, 62 = 0.286, ¢ = 0.535.



Polynomial Fits to Olympics Data

55 -
. 75 |-
5 L
45 - 70 -
4 - 65 -
35 60 -
3 55 |
25 Lo
1892 1932 1972 2012 012 3 45 6

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 1, model error 14.942, 62 = 0.0749, ¢ = 0.274.



Polynomial Fits to Olympics Data

55
x 75
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45 |- 70 |-
4 - 65 -
35 R 60 -
3 - X 55 L
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1892 1932 1972 2012 01 2 3 4 5 6

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 2, model error 9.7206, 02 = 0.0427, ¢ = 0.207.



Polynomial Fits to Olympics Data
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polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 3, model error 10.416, 2 = 0.0402, ¢ = 0.200.



Polynomial Fits to Olympics Data

55 - 75 |

5,
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4 - 65 -
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1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 4, model error 11.34, 62 = 0.0401, ¢ = 0.200.



Polynomial Fits to Olympics Data

55 - 75 |

5,

45 70 -

4 - 65 -

35 60 -

3 55 -

25 Lo
1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 5, model error 11.986, 02 = 0.0399, ¢ = 0.200.



Polynomial Fits to Olympics Data

55 - 75 |

5,

45 70 -

4 - 65 -

35 60 -

3 55 -

25 Lo
1892 1932 1972 2012 0123456

polynomial order

Left: fit to data, Right: marginal log likelihood. Polynomial
order 6, model error 12.369, 02 = 0.0384, ¢ = 0.196.



Validation Set

55

% 100 +

5+ 80 L

45 - x 60 -

4 | xx 40 L

35 | S 28 i

3 L "xxxx _20 |
25 L | | | -40 [ N N O |
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 0, training
error 29.757, validation error -0.29243, 6% = 0.302, ¢ = 0.550.



Validation Set
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5+ 80 L

45 - 60 -

4 40

20 —
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1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 1, training
error 14.942, validation error 4.4027, 6% = 0.0762, ¢ = 0.276.



Validation Set

100 +
5+ 80 L
45 60 +
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20 +
35 + 0L x
3 2
25 40 [ N R B R
1892 1932 1972 2012 01 2 3 45 6 7

polynomial order

Left: fit to data, Right: model error. Polynomial order 2, training
error 9.7206, validation error -8.6623, 6% = 0.0580, ¢ = 0.241.



Validation Set
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Left: fit to data, Right: model error. Polynomial order 3, training
error 10.416, validation error -6.4726, 6% = 0.0555, ¢ = 0.236.



Validation Set
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polynomial order

Left: fit to data, Right: model error. Polynomial order 4, training
error 11.34, validation error -8.431, 62 = 0.0555, ¢ = 0.236.



Validation Set
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polynomial order

Left: fit to data, Right: model error. Polynomial order 5, training
error 11.986, validation error -10.483, % = 0.0551, ¢ = 0.235.



Validation Set

100 |-
5+ 80 L

45 |- 60 |-
il 40 |-

35 - a0 . )
3 20 T

25 _40 | | | | | | |

1892 1932 1972 2012 01234567

polynomial order

Left: fit to data, Right: model error. Polynomial order 6, training
error 12.369, validation error -3.3823, 6% = 0.0537, ¢ = 0.232.



Example: GWAS Studies

» Try predicting phenotype (Y) from a set of known
mutations (S):
Yi. = Vsi,: +€;,

» Problem: observations are corrupted by environmental
disturbances:
Yi. = Vsi,: + wxi,: + €.

Here x; . is a vector of unobserved environmental factors
(Parts et al., 2011).

» Our contribution: marginalize both V and W.



Linear Dimensionality Reduction

Linear Latent Variable Model

» Represent data, Y, with a lower dimensional set of latent
variables X.

» Assume a linear relationship of the form
Yi. = Wxi,: + €.,

where

€.~ N(O, OZI).



Linear Latent Variable Model

Probabilistic PCA

» Define linear-Gaussian
relationship between W
latent variables and
data.
ng

n
pOYIX, W) = [T (y::1Wxi., 01)
i=1



Linear Latent Variable Model

Probabilistic PCA
» Define linear-Gaussian
relationship between W
latent variables and
data.
» Standard Latent «—?
variable approach:

n
pOYIX, W) = [T (yi:1Wxi., 01)
i=1



Linear Latent Variable Model

Probabilistic PCA
» Define linear-Gaussian
relationship between
latent variables and )
data. < o
» Standard Latent
variable approach:

» Define Gaussian prior p(YIX, W) = ﬁ N(y,uIlen aZI)
over latent space, X. i=1 ' '

P00 =N (x:l0,1)

i=1



Linear Latent Variable Model

Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Standard Latent
variable approach:

» Define Gaussian prior
over latent space, X.

> Integrate out latent
variables.

p(YIX, W) = H N (yi:Wx;,, 1)

i=1

p) =[N (x:100)
i=1

p(YIW) = ﬁ N (yi:0, WWT + 621)
i=1



Computation of the Marginal Likelihood

yio = Wxi.+€., X~ N(O,I), e ~N(0,6)



Computation of the Marginal Likelihood

yio = Wxi.+€., X~ N(O,I), e ~N(0,6)

Wx;. ~ N (0,WWT),



Computation of the Marginal Likelihood

yio = Wxi.+€., X~ N(O,I), e ~N(0,6)

Wx;. ~ N (0,WWT),

Wx;. + €.~ N (0, WWT + GZI)



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

|
G

=

p(YIW) = [ | N (yi.l0, WWT + 571)
i=1



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [ [N (:10,0), C=WWT +cl
i=1



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [ [N (:10,0), C=WWT +cl
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.
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Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [ [N (:10,0), C=WWT +cl
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,



Linear Latent Variable Model 11

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [ [N (:10,0), C=WWT +cl
i=1

1
logp (YIW) = —g log |C| - Etr (C_lYTY) + const.

If U, are first g principal eigenvectors of 1YY and the
corresponding eigenvalues are A,

W=UJLR", L=(A,- 021)%

where R is an arbitrary rotation matrix.



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between X
latent variables and
data.

«—52

n
p (X W) = [ [V (yi:Wxi., 0%1)
i=1



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

«—52

n
p (X W) = [ [V (yi:Wxi., 0%1)

i=1



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian X
relationship between
latent variables and
data. < o’
» Novel Latent variable
approach:
» Define Gaussian prior - 2
(lel W) = N i:lw i:r I
over parameters, W. g g (W 071
p
pW) = [ A (wi.lo,1)

Il
—-

I:



Linear Latent Variable Model 111

Dual Probabilistic PCA

» Define linear-Gaussian
relationship between
latent variables and
data.

» Novel Latent variable
approach:

» Define Gaussian prior
over parameters, W.

» Integrate out
parameters.

< —52

n
p O W) = [T (3 Wi, 01)
i=1

4
pW) =[N (wilo7)

i=1

14
p o) = [ [ AV (3,10, XXT +01)
=1



Computation of the Marginal Likelihood

y.j=Xw+e;, w,;i~N©OI, e:~N(00%)



Computation of the Marginal Likelihood

y.j=Xw+e;, w,;i~N©OI, e:~N(00%)

Xw.; ~ N (0,XX"),



Computation of the Marginal Likelihood

y.j=Xw+e;, w,;i~N©OI, e:~N(00%)

Xw.; ~ N (0,XX"),

Xw.;+ei~N (0, XX + 021)



Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004,
2005)

1‘
-

p
p(YX) = [ AV (3410, XX + 01)
j=1



Linear Latent Variable Model IV
Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p) = [[N(y.10.K), K=XXT+0
=1



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p
p) = [[N(y.10.K), K=XXT+0
i=1

logp (YIX) = —g log K| — %tr (K‘lYYT) + const.



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln

P
pX) = [[N(7,00K), K=XXT+0I
j=1

logp (YIX) = —= log K| — —tr (K™'YYT) + const.

If Uy are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,



Linear Latent Variable Model IV
PPCA Max. Likelihood Soln

P
pX) = [[N(7,00K), K=XXT+0I
j=1

logp (YIX) = —= log K| — —tr (K™'YYT) + const.

If Uy are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

NI=

X=UJLR", L=(A;-0%)

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

p
p(YIX) = H N(y:10,K), K=XXT+0
j=1

logp (YIX) = —-% log K| - —tr( _1YYT) + const.

If Uy are first g principal eigenvectors of p~lYYT and the
corresponding eigenvalues are A,

X=ULR", L=(A- UZI)%

where R is an arbitrary rotation matrix.



Linear Latent Variable Model IV

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

p(YW) = [[ N (3:10,C), C=WWT +%
i=1

logp (YIW) = —g log|C| - %tr (C_lYTY) + const.

If U, are first g principal eigenvectors of n7'Y"Y and the
corresponding eigenvalues are A,

W=UJLR", L=(A,- UZI)%

where R is an arbitrary rotation matrix.



Equivalence of Formulations

The Eigenvalue Problems are equivalent

» Solution for Probabilistic PCA (solves for the mapping)

Y'YU,=U,A, W=U,LR"

» Solution for Dual Probabilistic PCA (solves for the latent
positions)
YYTU; = U;Aq X= U{;LRT

» Equivalence is from

-1
U, =YTUA,?



individuals

individuals

ATGACCTGAAACTGGGGGACTGACGTGGAACGGT SNPS
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT

environmental factors

observed hidden
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
direct SNP effect
direct factor

Gene expression levels

|
effect

| factor/SNP
interactions
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Back to the full model

yo~N(pel, Ks + Kx + Ki + 0Kp +021)

N = S~~~ S~~~ \.‘ — ~~
mean S direct factor ~ SNP-factor  opyulation  noise
effects effects interactions

structure

G
p(Y|8,X,0x,Z,8) = [[N(v,]0,%),

g9=1

= Z Bisksy +Za XgX, + z V2 o(8K O %) (s ©xg)" +02Kp + 021
VkeS V(k.q)
S——— \W—J

Ks Kx K1



Reading

v

Section 2.3 of Bishop up to top of pg 85 (multivariate
Gaussians).

Section 3.3 of Bishop up to 159 (pg 152-159).
The LIMMI paper (Fusi et al., 2013).
The PANAMA paper (Fusi et al., 2012).

v

v

v



Book

Carl Edward Rasmussen and Christopher K. L. Williams

Rasmussen and Williams (2006)



Sampling a Function

Multi-variate Gaussians

» We will consider a Gaussian with a particular structure of
covariance matrix.

» Generate a single sample from this 25 dimensional
Gaussian distribution, f = [f1, f2. .. f2s5].

» We will plot these points against their index.



Gaussian Distribution Sample
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(a) A 25 dimensior}al correlated ran-  (b) colormap ishowing correlations
dom variable (values ploted against between dimensions.
index)

Figure: A sample from a 25 dimensional Gaussian distribution.
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Gaussian Distribution Sample
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1

Figure: A sample from a 25 dimensional Gaussian distribution.



J 4

Prediction of f, from f;

1 L
1 0.96587
/
0 v
0.96587 1
1 b

f

» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
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Prediction of f, from f;
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).

» We observe that
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Prediction of f, from f;
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0 /|
/
/ 096587 1
1L

f
» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).
» We observe that
» Conditional density: p(fa| f1 -0.313).




J 4

Prediction of f, from f;

1
‘% 1 096587
0 /|
S SN
/ 096587 1
1L
| |
1 0 1 — —
f2

» The single contour of the Gaussian density represents the
joint distribution, p(fi, f2).

» We observe that
» Conditional density: p(fa| f1 -0.313).




Prediction with Correlated Gaussians

» Prediction of f, from fi requires conditional density.

» Conditional density is also Gaussian.

K,
p(falfi) = N [le f1,k22 kll]

where covariance of joint density is given by

kip ki
K= b
[kZ,l kz,z]



J 4

Prediction of f5 from f;

1 -

/ /7 1 057375
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fs

» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).
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Prediction of f5 from f;

1 -
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» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).

» We observe that




J 4

Prediction of f5 from f;

1
4/7 1 0.57375
0
/ T —
k// 0.57375 1
1
| |
1 0 1 — —
fs

» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).

» We observe that
» Conditional density: p(fs| f1 -0.313).




J 4

Prediction of f5 from f;

1 L
4/7 1 0.57375
0 Q/

/7\ 0.57375 1

-1 0 1
fs
» The single contour of the Gaussian density represents the
joint distribution, p(fi, f5).
» We observe that
» Conditional density: p(fs| f1 -0.313).




Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

P(EIE) = N (LK, KL, K. — KK 1K

» Here covariance of joint density is given by

[ Kee Kig
K= [Kf * Ka(-,*]



Prediction with Correlated Gaussians

» Prediction of f. from f requires multivariate conditional
density.

» Multivariate conditional density is also Gaussian.

p(Elf) = N (£, E)
p =K K i f
L =K., - K KK,

» Here covariance of joint density is given by

[ Kee Kig
K= [Kf % Ka(-,*]



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE, Squared
Exponential, Gaussian)

12
k(X,X/) = aexp [_u]

2(2

» Covariance matrix is

3 -
built using the inputs to 5 L
the function x. 1k
» For the example above it 0
was based on Euclidean 1L
distance. ol
» The covariance function 3 | | | |

is also know as a kernel. 1 N85 N ns 1



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1 =-3.0,x; =-3.0
ki1 =1.00 x exp (_w)

2x2.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

[l

202

)

1.00

x1 =-3.0,x1 =-3.0

— — — 2
ki1 =1.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

Xy = 120, X1 = -3.0

— 2
kp1 =1.00 x exp (—%)

[l

202

1.00

)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

[l

202

1.00

)

Xy = 120, X1 = -3.0

0.110

— 2
kp1 =1.00 x exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

Xy = 120, X1 = -3.0

— 2
kp1 =1.00 x exp (—%)

[l

)

1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x2 =1.20,x, =1.20

ko = 1.00 X exp (_%)

[l

)

1.00 0.110

0.110

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.00 0.110

x2 =1.20,x, =1.20
0.110 | 1.00

ko = 1.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

X3 = 140, X1 = -3.0

k3,1 =1.00 x exp (_%)

[l

)

1.00 0.110

0.110 1.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.00 0110
x3 =140, x, = =3.0
0.110 1.00
—— 2
k31 = 1.00 x exp (- 95502 ) 0.0889

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,xj) = aexp (——HXZ;JH )
1.00 0.110 0.0889

X3 = 140, X1 = -3.0
0.110 1.00

k31 = 1.00 x exp (- 45 20) 0.0889

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,xj) = aexp (——HXZ;JH )
1.00 0.110 0.0889

x3 =1.40,x, =1.20
0.110 1.00

— 2
k32 = 1.00 x exp (- 55552 ) 0.0889

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,x]') = aexp (——llxi;;/|| )
1.00 0.110 0.0889

x3 =1.40,x, =1.20
0.110 1.00

k32 = 1.00 x exp (- o120 0.0889| 0.995

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x3 =1.40,x, =1.20

ks> = 1.00 X exp (_%)

[l

)

1.00 0.110 0.0889
0.110 1.00 0.995

0.0889 0.995

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, x]-) = aexp (—

x3 = 140, x3 = 1.40

k33 = 1.00 X exp (_%)

[l

)

1.00 0.110 0.0889
0.110 1.00 0.995

0.0889 0.995

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

2
k(xi,x]') = aexp (——llxi;;/|| )
1.00 0.110 0.0889

x3 =1.40,x3 =1.40
0.110 1.00 0.995

_ 2
ks = 1.00 x exp (~ L4&140%) 0.0889 0.995 | 1.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

x3 = 140, x3 = 1.40

k33 = 1.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 2.00 and « = 1.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

X1 = —3, X1 = -3

_2__7\2
k11 =1.0xexp (—(212032) )

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0

X1 = —3, X1 = -3

_2__7\2
k11 =1.0xexp (—(212032) )

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0

Xy = 12, X1 = -3

_ (1.2--3) )

krp =1.0% exp( S0

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0

Xp = 12, X1 = -3 0.11

_ (1.2--3) )

krp =1.0% exp( S0

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

Xp = 12, X1 = -3 0.11

_ (1.2--3) )

krp =1.0% exp( S0

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

Xy = 12, Xy = 1.2 0.11

_(12-1.2)° )

koo =1.0 % exp( 307

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11

Xx2=12,x=12 0.11] 1.0

_(12-1.2)° )

koo =1.0 % exp( 307

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11

x3=14,x1=-3 0.11 1.0

_ (14--3) )

ksp =1.0x% exp( SO0

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x; =-3 01l 10
0.089
k31 =1.0 X exp (_(1;_2})32)2)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0
0.089
ks» = 1.0 X exp (_%)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0
0.089| 1.0
ks» = 1.0 X exp (_%)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14,x =12 0.11 1.0 1.0
0.089 1.0
ks» = 1.0 X exp (_%)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
x3=14, %3 = 1.4 011 10 1.0
0.089 1.0
k33 =1.0 X exp (_%)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089
x3=14, %3 = 1.4 011 10 1.0
0.089 1.0 | 1.0
k33 =1.0 X exp (_%)

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089
Xy =20,2 =-3 011 1.0 1.0
0.089 1.0 1.

fur = 10 exp (~555)
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X =20, =12 011 1.0 1.0 092
0089 1.0 1.0
_ (2.0-1.22
ksp = 1.0 x exp (- G552 0.044 0.92

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.
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k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044

X, =20,x; =14 011 1.0 1.0 092
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kss = 1.0 x exp (- G555 0.044 0.92

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.
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k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089 0.044

X, =20,x; =14 011 1.0 1.0 092
0089 1.0 1.0
_ (2.0-1.4)2
kss = 1.0 x exp (- G555 0.044 0.92|0.96

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044
x4=20,x3=14 011 10 1.0 092

0.089 1.0 1.0 0.96

_ (20-1.4)° )

kaz =1.0% exp( S0

0.044 092 0.96

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _HXZ;AF )

1.0 0.11 0.089 0.044
x4 =2.0,x1 =20 011 10 1.0 092

0.089 1.0 1.0 0.96

_(2.0-2.0 )

kaa =1.0X% exp( S0

0.044 092 0.96

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

1.0 0.11 0.089 0.044
x4 =2.0,x1 =20 011 10 1.0 092

0.089 1.0 1.0 0.96

_(2.0-2.0 )

kaa =1.0X% exp( S0

0.044 092 096| 1.0

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

X4 = 20, X4 = 2.0

_(2.0-2.0 )

kaa =1.0X% exp( S0

x1=-3,x=12,x3=14,and x4 = 2.0 with{ =2.0and a = 1.0.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x1 =-3.0,x; =-3.0
ki1 = 4.00 x exp (_w)

2x5.002

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00
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— — — 2
ki1 = 4.00 x exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.
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Covariance Functions

Where did this covariance matrix come from?

2
k (xi,x]-) = aexp (_ —HXZZH )
400 281

Xy = 120, X1 = -3.0
2.81

— 2
kp1 =4.00 X exp (—%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (Xi, xj) = aexp (— —”ﬁ;’” )
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2.81

kop = 4.00 X exp (_%)
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Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00 281

x2 =1.20,x, =1.20
2.81 | 4.00

kop = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

2
k (Xi, xj) = aexp (— —”ﬁ;’” )
4.00 281

X3 = 140, X1 = -3.0
2.81 4.00

k3,1 =4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _||x,»2—;,||2 )

400 281
X3 = 140, X1 = -3.0
281 4.00
__ 2
k31 = 4.00 X exp (—%) 2.72

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00 281 272

X3 = 140, X1 = -3.0
2.81 4.00

k31 =4.00 X exp (—%) 2.72

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) = aexp (— _HXZ;AF )

4.00 281 272

x3 =1.40,x, =1.20
281 4.00

_ 2
ka2 = 4.00 x exp (- L4120 7

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

4.00 281 272

x3 =1.40,x, =1.20
281 4.00

— 2
k32 = 4.00 x exp (- 5552 ) 2.72 | 4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

_ b=
k(Xi,xj) = aexp (_T

4.00
x3 =140, x, = 1.20
2.81
ka2 = 4.00 x exp (- L4120 7

2.81

4.00

4.00

2.72

4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

_ b=
k(Xi,xj) = aexp (_T

400
X3 = 1_40/ X3 = 1.40
281
kas = 4.00 x exp (- L) 7

2.81

4.00

4.00

2.72

4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

[l

k(xi,x]-) = aexp (— 7

400
X3 = 1_40/ X3 = 1.40
281
kas = 4.00 x exp (- L) 7

2.81

4.00

4.00

2.72

4.00

4.00

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Covariance Functions

Where did this covariance matrix come from?

k (xi, xj) =aexp (— _||x,»2—;,||2 )

x3 = 140, x3 = 1.40

ks3 = 4.00 X exp (_%)

x1 = =3.0, x, = 1.20, and x3 = 1.40 with £ = 5.00 and « = 4.00.



Basis Function Form

Radial basis functions commonly have the form

2
i =
x;) = exp|—————|.
1 —

» Basis function 2 05 L

maps dataintoa <

“feature space” in

which a linear sum 0 ! L

is a non linear
function.

| —
8 6 4 -2 0 2 4 6 8
X

Figure: A set of radial basis functions with width
¢ = 2 and location parameters p = [-4 0 4]".



Basis Function Representations

» Represent a function by a linear sum over a basis,
m
foxisw) = Y wei(x;.), @)
k=1

» Here: m basis functions and ¢(-) is kth basis function and
w=[w,..., wn]".

» For standard linear model: ¢x(x;.) = x;j.



Random Functions

Functions derived
using;:

f0) =) (),
k=1

where W is sampled
from a Gaussian
density,

wr ~N(QO,a).

f()

[
864202 4 6 8

X
Figure: Functions sampled using the basis set from
figure 8. Each line is a separate sample, generated
by a weighted sum of the basis set. The weights, w
are sampled from a Gaussian density with variance
a=1



Covariance Functions

RBF Basis Functions

k(x,x") = ap(x) " p(x")




Covariance Functions

RBF Basis Functions

k(x,x") = ap(x) " p(x")

2
e

-1
0
1
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Direct Construction of Covariance Matrix

» Use matrix notation to write function,

f(xi;w) = Z WPy (x;)
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Direct Construction of Covariance Matrix

» Use matrix notation to write function,
m
fxi;w) = Z wiPr (X;)
k=1

computed at training data gives a vector

f = Odw.

w and f are only related by an inner product.
@ € R is a design matrix

@ is fixed and non-stochastic for a given training set.



Direct Construction of Covariance Matrix

» Use matrix notation to write function,
m
F O w) =) wiy (x)
k=1

computed at training data gives a vector

f = dw.

w and f are only related by an inner product.
@ e R™Y is a design matrix
@ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.



Expectations

» We have
f) = D(w).

We use (-) to denote expectations under prior distributions.



Expectations

» We have
f) = D(w).

» Prior mean of w was zero giving

(f) = 0.

We use (-) to denote expectations under prior distributions.



Expectations

» We have
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» Prior mean of w was zero giving
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K = (ff7) —(HH)T

We use (-) to denote expectations under prior distributions.



Expectations

» We have
(f) = D (w).
» Prior mean of w was zero giving
(f) = 0.

» Prior covariance of f is
K= (f7) —(H(H)"
<ffT> =® <WWT> DT,

giving
K= )/'d)CDT.

We use (-) to denote expectations under prior distributions.



Back to the full model

yo~N(pel, Ks + Kx + Ki + 0Kp +021)

N = S~~~ S~~~ \.‘ — ~~
mean S direct factor ~ SNP-factor  opyulation  noise
effects effects interactions

structure

G
p(Y|8,X,0x,Z,8) = [[N(v,]0,%),

g9=1

= Z Bisksy +Za XgX, + z V2 o(8K O %) (s ©xg)" +02Kp + 021
VkeS V(k.q)
S——— \W—J

Ks Kx K1



Gaussian Process Interpolation

3,
2,
1 .
= o0l
<
1L
2L x
-3 \ \ \ |
2 1 0 1 2

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).
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Gaussian Process Interpolation

-2 -1 0 1 2
X

Figure: Real example: BACCO (see e.g. (Oakley and O'Hagan, 2002)).
Interpolation through outputs from slow computer simulations (e.g.
atmospheric carbon levels).



Gaussian Process Regression

Figure: Examples include WiFi localization, C14 callibration curve.
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Figure: Examples include WiFi localization, C14 callibration curve.



Gaussian Process Regression

3,
2,
1 x
= 0
=
1
2
_3 | | | |

-2 -1 0 1 2

X

Figure: Examples include WiFi localization, C14 callibration curve.



Dealing with Non Gaussian Data

» Marginalization property of Gaussians very attractive.
» How to incorporate non-Gaussian data?

» Data which isn’t missing at random.

» Binary data.

» Ordinal categorical data.

» Poisson counts.

» Outliers.



Project Back into Gaussian

» Combine non-Gaussian likelihood with
Gaussian prior.
» Either:
» Project back to Gaussian posterior that

is nearest in KL sense.
» Expectation propagation.

» Or:

» Fit a locally valid Gaussian
approximation.
» Laplace Approximation.

Ongoing work with Ricardo Andrade Pacheco (EP) and Alan Saul
(Laplace) also James Hensman.



Gaussian Noise

2 p(£Xx,y)

0 ! ! ! !
-3 -2 -1 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.




Gaussian Noise

2 - p (X, x.,y)

p(y. = 0.6lf.)
1L i
0 | | |

3 2 - 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.



Gaussian Noise

2 p(LXx,y) A
p(y. = 0.6lf.)

1 B p(ﬂ|X/x>f-/YIyx-) N

0 | | |

3 2 - 0 1 2 3 4

Figure: Inclusion of a data point with Gaussian noise.



Classification Noise Model

Probit Noise Model
L bi= 1 yi=1
=
2 05 - s
QU
0 |

Figure: The probit model (classification). The plot shows p (yilf;) for
different values of y;. For y; = 1 we have

pilf) = o (f) = [* N (0,1)dz.



Classification

3 F T T T
p (X%, y)

0 ! ! !
-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.




Classification

3F ! ‘ : -
p (fIX x.,y)
p(y-=1f)

2 L _

1 |

0 | | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.



Classification

3F ‘ ‘ ‘ -
p (f:X, x.,y)
p(y-=1f)

2 p(flXoxoy,ye) 4

1+

0 | | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.



Classification

3F ‘ ‘ ‘ =
p (fX, ., y)
p(y. =1If.)

2 | p (f:IX, %, y, y) §
g (fIX, x.,y)

1 |

0 | |

-3 -2 -1 0 1 2 3

Figure: An EP style update with a classification noise model.



Ordinal Noise Model

Ordered Categories
L Vi= -1 hi=1
:':_\S‘
2 05 -
QU
0

fi

Figure: The ordered categorical noise model (ordinal regression). The

plot shows p (vilf;) for different values of y;. Here we have assumed
three categories.



Ordinal Regression

p (£IX, x., y)

O | |

-3 -2 -1 0 1

2

3

Figure: An EP style update with an ordered category noise model.



Ordinal Regression

4

p(f*|X/ X*/Y)
3| p(y-=0lf)
2 - i
1} i
O | | |

-3 -2 -1 0 1

2

3

Figure: An EP style update with an ordered category noise model.



Ordinal Regression

4 | i
p(fIX,x.,y)
3| p(y-=0lf) i
p(f:X,x.,y, y.)
2 L i
1L i
O | | |

-3 2 -1 0 1 2 3
Figure: An EP style update with an ordered category noise model.



Ordinal Regression

4t |
p(f:X,x.,y)
3| p(y-=0lf) i
p (ﬂlxl x*/ y! y*)
2 [ q (X%, y) |
1 |
O | | |

-3 2 -1 0 1 2 3
Figure: An EP style update with an ordered category noise model.



Survival Models

Cox Gaussian Process Regression

exp(GP(t)) GP(x(t),t)
~ ~=
h(t|x) = ho(t) exp( pBx )

o Apply these extremely flexible methods to Survival Analysis

o Alter assumptions of Cox Proportional Hazards Model to discover
how significant they are, test whether we can increase our predictive
power by:

@ Breaking proportionality assumption
@ Allowing for interactions between variables

an Ante PO




Learning Covariance Parameters

Can we determine covariance parameters from the data?

y' Ky

N (yl0,K) = exp|———

(2m)2|K|

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)
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Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
lOgN (YlO, K) :—E lOg |K|—¥

- glog2n

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)



Learning Covariance Parameters

Can we determine covariance parameters from the data?

1 TK—l
E(0) = 5 log|K| + yz—y

The parameters are inside the covariance
function (matrix).

kij = k(xi, xj; 0)



Eigendecomposition of Covariance

A useful decomposition for understanding the objective
function.

K = RA*R”

Diagonal of A represents distance
along axes.
R gives a rotation of these axes.

where A is a diagonal matrix and R'R = L.
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Capacity control: log K|

A0 0
A= 0 A O
0 0 A

|A| = A1A2A3
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Capacity control: log K]

RA =

Wyl Wop A2

IRA| = A1,

A
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Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

oL 20
15

1 10

2 0 /\’\/ 5
= 0
1 5

2 F \ \ \ -10

2 1 0 1 2 1070 10° 10
x length scale, £

T-1

1 K
E(6) = 5 log|K| + yoy



Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

)L 20
15
1 x 10
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-1 - —
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~~
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x length scale, £
y'Kly
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Learning Covariance Parameters

Can we determine length scales and noise levels from the data?
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Gene Expression Example

» Given given expression levels in the form of a time series
from Della Gatta et al. (2008).

» Want to detect if a gene is expressed or not, fit a GP to each
gene (Kalaitzis and Lawrence, 2011).



Kalaitzis and Lawrence BMC Bioinformatics 2011, 12:180
http://www.biomedcentral.com/1471-2105/12/180

BMC
Bioinformatics

ESEARCH ARTICLE Open Access

A Simple Approach to Ranking Differentially
Expressed Gene Expression Time Courses through
Gaussian Process Regression

Alfredo A Kalaitzis” and Neil D Lawrence”

Abstract

Background: The analysis of gene expression from time series underpins many biological studies. Two basic forms
of analysis recur for data of this type: removing inactive (quiet) genes from the study and determining which
genes are differentially expressed. Often these analysis stages are applied disregarding the fact that the data is
drawn from a time series. In this paper we propose a simple model for accounting for the underlying temporal
nature of the data based on a Gaussian process.

Results: We review Gaussian process (GP) regression for estimating the continuous trajectories underlying in gene
expression time-series. We present a simple approach which can be used to filter quiet genes, or for the case of
time series in the form of expression ratios, quantify differential expression. We assess via ROC curves the rankings
produced by our regression framework and compare them to a recently proposed hierarchical Bayesian model for
the analysis of gene expression time-series (BATS). We compare on both simulated and experimental data showing
that the proposed approach considerably outperforms the current state of the art.



http://www.biomedcentral.com/1471-2105/12/180
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Gaussian Process Fit to Olympic Marathon Data
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Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE, Squared
Exponential, Gaussian)

12
k(X,X/) = aexp [_u]

2(2

» Covariance matrix is

3 -
built using the inputs to 5 L
the function x. 1k
» For the example above it 0
was based on Euclidean 1L
distance. ol
» The covariance function 3 | | | |

is also know as a kernel. 1 N85 N ns 1



Covariance Functions

Linear Covariance Function

k(x,x") = ax"x’

» Bayesian linear
regression.

a=1

F

-




Covariance Functions

Linear Covariance Function

k(x,x') = ax"x’

3 ~
2 L
» Bayesian linear 1k
regression. 0 F
a=1 1E
2L

-3 | | | |



Covariance Functions

MLP Covariance Function

k(x,x") = qasin

wx'x +b )

VoxTx+b+1Vux’Tx +b+1

» Based on infinite neural
network model.

w =40
b=4




Covariance Functions

MLP Covariance Function

k(x,x") = aasin

wx'x' +b )

Vox™x+b+ 1 Vux’Tx +b+1

» Based on infinite neural 2 -
network model. 1 -
0 ,
w =40
1L
b=4 2 b
| | | |




Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

k(x,x") = aexp(—lx_x l)

202

» Covariance matrix is
built using the inputs to
the function x.




Covariance Functions

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance
function

IX—X’I)

k(x,x") = aexp (— 572

» Covariance matrix is 0.5
built using the inputs to 0

. 0.
the function x. 1

15
2 b ! ! ! |




Outline

Kalman Filter



Simple Markov Chain

v

Assume 1-d latent state, a vector over time, x = [x7 ... x7].

v

Markov property,

Xi =Xi-1 + €,
€i ~N(0,a)
= x; ~N (xi-1,a)

v

Initial state,
xo ~ N (0, ap)

v

If xg ~ N (0, @) we have a Markov chain for the latent states.

\4

Markov chain it is specified by an initial distribution
(Gaussian) and a transition distribution (Gaussian).



Gauss Markov Chain

X0 =0, €j~N(0,1)

xo =0.000, € =-224
x1 =0.000-224 =-224



Gauss Markov Chain

X0 =0, €j~N(0,1)

x1=-224, € =0457
Xy = =224+ 0.457 = -1.78



Gauss Markov Chain

X0 =0, €j~N(0,1)

xo=-178, €3=0.178
x3=-178+0.178 = -1.6



Gauss Markov Chain

X0 =0, €j~N(0,1)

x3=-16, €4=-0.292
x4 =-16-0292 =-1.89



Gauss Markov Chain

X0 =0, €j~N(0,1)

x3 =-189, €5=-0.501
x5 = —1.89 — 0.501 = -2.39



Gauss Markov Chain

X0 =0, €j~N(0,1)

x5 =-239, € =132
X =—2.39+ 132 =-1.08



Gauss Markov Chain

X0 =0, €j~N(0,1)

xe = —1.08, €7 =0.989
x7 = —1.08 + 0.989 = —-0.0881



Gauss Markov Chain

X0 =0, €j~N(0,1)

x7 =—0.0881, €3 =-0.842
xg = —0.0881 — 0.842 = —0.93



Gauss Markov Chain

X0 =0, €j~N(0,1)

xg =—-0093, €9 =-041
x9 = —0.93 -0.410 = -1.34



Multivariate Gaussian Properties: Reminder

If
z~ N(y, C)

and
x=Wz+b

then
x~ N (W +b,WCW)



Multivariate Gaussian Properties: Reminder

Simplified: If
z~N (0, 021)
and
x =Wz

then
x~N (0, a2wa)



Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

X1
X2

X4

X5
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Matrix Representation of Latent Variables
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Matrix Representation of Latent Variables

X1 €1

X3 €2
X3 - €3

X4
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Matrix Representation of Latent Variables



Multivariate Process

» Since x is linearly related to e we know x is a Gaussian
process.

» Trick: we only need to compute the mean and covariance
of x to determine that Gaussian.



Latent Process Mean

X=L1€



Latent Process Mean

(x) = (L1€)



Latent Process Mean

(x) = L1(€)



Latent Process Mean

(x) = L1(€)

€ ~N(0,al)



Latent Process Mean

<X> — L10



Latent Process Mean

(x)=0



Latent Process Covariance

xx' =Ljee'L;

x'=€e'LLT



Latent Process Covariance

(xx") = <L166TL1T>



Latent Process Covariance

(xx") =Lj{ee" )L



Latent Process Covariance

(xx") =Lj{ee" )L

€ ~N(0,al)



Latent Process Covariance

(xx") = al L



Latent Process

X=L1€



Latent Process

X=L1€

e ~ N (0,al)



Latent Process

X:L1€

e ~N(0,al)



Latent Process

X:L1€

e ~N(0,al)

x ~ N (0, aLsL])



Covariance for Latent Process II

v

Make the variance dependent on time interval.

» Assume variance grows linearly with time.

v

Justification: sum of two Gaussian distributed random
variables is distributed as Gaussian with sum of variances.

\4

If variable’s movement is additive over time (as described)
variance scales linearly with time.



Covariance for Latent Process II

» Given
e~N(0,al) = e ~ N (0,aL,L]).

Then
e~ N(0,Atal) = e ~ N (0, AtaLyL]).

where At is the time interval between observations.



Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])



Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

K = aAfL L]



Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.



Covariance for Latent Process II

e~ N(0,arl), x~N(0,aAfL;L])

K = aAfL L]

ki,]' = O(Aﬂ:—il;,]'

where 1. is a vector from the kth row of Ly: the first k elements
are one, the next T — k are zero.

kij = aAt min(, j)
define Ati = t; so

ki,]' = O(mil’l(ti, t]) = k(ti, t])



Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

k(t,t') = amin(t, t')

» Covariance matrix is
built using the inputs to
the function ¢.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE Squared
Exponential, Gaussian)

2
lIx —X'Il;
22

k(x,x') = aexp [—

» Covariance matrix is
built using the inputs to
the function x.

» For the example above it
was based on Euclidean
distance.

» The covariance function
is also know as a kernel.




Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBE, Squared
Exponential, Gaussian)

12
k(X,X/) = aexp [_u]

2(2

» Covariance matrix is

3 -
built using the inputs to 5 L
the function x. 1k
» For the example above it 0
was based on Euclidean 1L
distance. ol
» The covariance function 3 | | | |

is also know as a kernel. 1 N85 N ns 1



Covariance Functions

Where did this covariance matrix come from?

Exponentiated Quadratic

Visualization of inverse covariance (precision).

» Precision matrix is not o
sparse.

» Each point is dependent
on all the others.

» In this case
non-Markovian.




Covariance Functions

Where did this covariance matrix come from?

Markov Process

Visualization of inverse covariance (precision).

» Precision matrix is
sparse: only neighbours
in matrix are non-zero.

» This reflects conditional
independencies in data.

» In this case Markov
structure.




Simple Kalman Filter I

» We have state vector X = [x1 ... xq] € R™4 and if each state
evolves independently we have

q
o0 = [ [ ptx.)
i=1
p(x.;) = N (x,i]0,K).

» We want to obtain outputs through:

Yi: = Wxi,:



Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q



Kronecker Product

aK bK
cK dK
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Stacking and Kronecker Products I

» Represent with a ‘stacked” system:
p(x) = N (x|0,I® K)

where the stacking is placing each column of X one on top
of another as
X:1

X:2
X =

X.q



Column Stacking

LN




For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



For this stacking the marginal distribution over time is given by
the block diagonals.



Two Ways of Stacking

Can also stack each row of X to form column vector:
X1,:
X2,
X =

XT,:

p(x) = N (x|0,K®1I)



Row Stacking

.®E:




For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



For this stacking the marginal distribution over the latent
dimensions is given by the block diagonals.



Observed Process

The observations are related to the latent points by a linear
mapping matrix,
Yyi: = wxi,: + €,

€~ N(O, 021)



Mapping from Latent Process to Observed

W 0 0 X1,: WXL;
0 WO X X2, — WX2,:
0 0 W X3, WX3I;




Output Covariance

This leads to a covariance of the form
IOW)KDIWT) + Io?
Using (A ® B)(C ® D) = AC® BD This leads to
K@ WW' +10°

or
y~N(0,WW™ @K +10?)



Kernels for Vector Valued Outputs: A Review

Foundations and Trends® in
Machine Learning

Vol. 4, No. 3 (2011) 195-266 n.w

© 2012 M. A. Alvarez, L. Rosasco and N. D. Lawrence
DOI: 10.1561,/2200000036 the essence of knowledge

Kernels for Vector-Valued
Functions: A Review
By Mauricio A. Alvarez,
Lorenzo Rosasco and Neil D. Lawrence



Kronecker Structure GPs

» This Kronecker structure leads to several published
models.

(K(X, x,))j,j’ = k(X, X/)kT(j, j/)/
where k has x and kr has i as inputs.

» Can think of multiple output covariance functions as
covariances with augmented input.

» Alongside x we also input the j associated with the output
of interest.



Separable Covariance Functions

» Taking B = WWT we have a matrix expression across
outputs.
K(x,x") = k(x,x")B,
where B is a p X p symmetric and positive semi-definite
matrix.
» B is called the coregionalization matrix.

» We call this class of covariance functions separable due to
their product structure.



Sum of Separable Covariance Functions

» In the same spirit a more general class of kernels is given by

9
K(x,x') = Z ki(x,x")B;.

=1

» This can also be written as

q
K(X,X) = Z B; ®k;(X,X),
j=1

» This is like several Kalman filter-type models added
together, but each one with a different set of latent
functions.

» We call this class of kernels sum of separable kernels (SoS
kernels).



Geostatistics

» Use of GPs in Geostatistics is called kriging.

» These multi-output GPs pioneered in geostatistics:
prediction over vector-valued output data is known as
cokriging.

» The model in geostatistics is known as the linear model of
coregionalization (LMC, Journel and Huijbregts (1978);
Goovaerts (1997)).

» Most machine learning multitask models can be placed in
the context of the LMC model.



Weighted sum of Latent Functions

» In the linear model of coregionalization (LMC) outputs are
expressed as linear combinations of independent random
functions.

» In the LMC, each component f; is expressed as a linear sum

q
00 =Y wu(x).
j=1

where the latent functions are independent and have
covariance functions k;j(x, x’).

» The processes { fj(x)}?z1 are independent for g # j'.



Kalman Filter Special Case

» The Kalman filter is an example of the LMC where
ui(x) = xi(t).
» Le. we've moved form time input to a more general input
space.
» In matrix notation:
1. Kalman filter
F =WX

2. LMC
F=WU

where the rows of these matrices F, X, U each contain g
samples from their corresponding functions at a different
time (Kalman filter) or spatial location (LMC).



Intrinsic Coregionalization Model

» If one covariance used for latent functions (like in Kalman
filter).

» This is called the intrinsic coregionalization model (ICM,
Goovaerts (1997)).

» The kernel matrix corresponding to a dataset X takes the
form
K(X, X) = B®k(X, X).



Autokrigeability

» If outputs are noise-free, maximum likelihood is
equivalent to independent fits of B and k(x, x") (Helterbrand
and Cressie, 1994).

» In geostatistics this is known as autokrigeability
(Wackernagel, 2003).

» In multitask learning its the cancellation of intertask
transfer (Bonilla et al., 2008).



Intrinsic Coregionalization Model

K(X,X) = ww' ® k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).




Intrinsic Coregionalization Model

KX, X) = ww" ®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).

1 05
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).
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Intrinsic Coregionalization Model

K(X,X) = B®k(X, X).
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LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02
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LMC Samples
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LMC Samples

K(X,X) = B; @ k1 (X, X) + Br ® ko (X, X)

(1.4 0.5
Bi=05 12
fl =1

(1 0.5
B2=105 13]

52 =02




LMC in Machine Learning and Statistics

» Used in machine learning for GPs for multivariate
regression and in statistics for computer emulation of
expensive multivariate computer codes.

» Imposes the correlation of the outputs explicitly through
the set of coregionalization matrices.
» Setting B = I, assumes outputs are conditionally

independent given the parameters 0. (Minka and Picard,
1997; Lawrence and Platt, 2004; Yu et al., 2005).

» More recent approaches for multiple output modeling are
different versions of the linear model of coregionalization.



Semiparametric Latent Factor Model

» Coregionalization matrices are rank 1 Teh et al. (2005).
rewrite equation (??) as

K(X, X) =

i
/ W’]WT] ® k](X, X).

j=1

» Like the Kalman filter, but each latent function has a
different covariance.

» Authors suggest using an exponentiated quadratic
characteristic length-scale for each input dimension.



Semiparametric Latent Factor Model Samples

KX, X) = W;,1WI—1 ® ki1(X, X) + W;,zwjz ® ka(X, X)
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Semiparametric Latent Factor Model Samples
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Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)
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Semiparametric Latent Factor Model Samples

KX, X) = W;,1W:T1 ® ki1(X, X) + wzrzwj2 ® ka(X, X)
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Gaussian processes for Multi-task, Multi-output and
Multi-class

» Bonilla et al. (2008) suggest ICM for multitask learning.

» Use a PPCA form for B: similar to our Kalman filter
example.

» Refer to the autokrigeability effect as the cancellation of
inter-task transfer.

» Also discuss the similarities between the multi-task GP and
the ICM, and its relationship to the SLEM and the LMC.



Multitask Classification

» Mostly restricted to the case where the outputs are
conditionally independent given the hyperparameters ¢
(Minka and Picard, 1997; Williams and Barber, 1998; Lawrence
and Platt, 2004; Seeger and Jordan, 2004; Yu et al., 2005;
Rasmussen and Williams, 2006).

» Intrinsic coregionalization model has been used in the
multiclass scenario. Skolidis and Sanguinetti (2011) use the
intrinsic coregionalization model for classification, by
introducing a probit noise model as the likelihood.

» Posterior distribution is no longer analytically tractable:
approximate inference is required.



Computer Emulation

» A statistical model used as a surrogate for a
computationally expensive computer model.

» Higdon et al. (2008) use the linear model of
coregionalization to model images representing the
evolution of the implosion of steel cylinders.

» In Conti and O’'Hagan (2009) use the ICM to model a
vegetation model: called the Sheffield Dynamic Global
Vegetation Model (Woodward et al., 1998).



Example: Prediction of Malaria Incidence in Uganda

» Work with John Quinn and Martin Mubaganzi (Makerere
University, Uganda)

» See http://cit. mak.ac.ug/cs/aigroup/.



Malaria Prediction in Uganda




Malaria Prediction in Uganda
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Malaria Prediction in Uganda




Mixed Noise Models
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Thow the brain recognizes patterns, technology companies are
reporting startling gains in fields as diverse as computer vision,
speech recognition and the identification of promising new molecules
for designing drugs.
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revolutionize artificial intelligence, as yesterday’s
front-page article at the New York Times suggests?
There is good reason to be excited about deep
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If I had to place one search priority above all else, I'd
say right now, Google's most ambitious project is the
knowledge graph. Yea, they are pushing Google+ big
time, but the knowledge graph is a level above all of
that technically.

SEARCH BUZZ VIDEO ?‘ Subseribe

Of course, Google has an outstanding team working
on this project lead by one of the smartest people I've
ever met Amit Singhal.

To take the knowledge graph to the next level, Google
has hired/acquired Geoffrey Hinton and his team at
DNNresearch. Geoffrey posted a note on his Google+
page about it:
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Last summer, I spent several months working with Google’s Knowledge team in Mountain
View, working with Jeff Dean and an incredible group of scientists and engineers who have a
real shot at making spectacular progress in machine learning. Together with two of my recent BROWSE BY:
graduate students, Ilya Sutskever and Alex Krizhevsky (who won the 2012 ImageNet
competition), 1 am betting on Google’s team to be the epicenter of future breakthroughs. That
means we'll soon be joining Google to work with some of the smartest engineering minds to
tackle some of the biggest challenges in computer science. 'l remain part_time at the
University of Toronto, where I still have a lot of excellent graduate students, but at Google T
will get to see what we can do with very large-seale computation.
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I know we just scratched the surface of the knowledge graph and I am excited to see
where it takes us in the future.
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Tam just glad I don't have to figure out how to get us there. I get to just sit and enjoy
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direction for further research.

11.1. HAVE WE THROWN THE BABY OUT WITH THE BATH WATER?

According to the hype of 1987, neural networks were meant to be intelligent
models which discovered features and patterns in data. Gaussian processes
in contrast are simply smoothing devices. How can Gaussian processes pos-
sibly replace neural networks? What is going on?

I think what the work of Williams and Rasmussen (1996) shows is that
many real-world data modelling problems are perfectly well solved by sensi-
ble smoothing methods. The most interesting problems, the task of feature
discovery for example, are not ones which Gaussian processes will solve. But
maybe multilayer perceptrons can’t solve them either. On the other hand,
it may be that the limit of an infinite number of hidden units, to which
(GGaussian processes correspond, was a bad limit to take; maybe we should
backtrack, or modify the prior on neural network parameters, so as to cre-
ate new models more interesting than Gaussian processes. Evidence that
this infinite limit has lost something compared with finite neural networks
comes from the observation that in a finite neural network with more than
one output, there are non—trivial correlations between the outputs (since
they share inputs from common hidden units); but in the limit of an infi-
nite number of hidden units, these correlations vanish. Radford Neal has
suggested the use of non—Gaussian priors in networks with multiple hid-
den layers. Or perhaps a completely fresh start is needed, approaching the
problem of machine learning from a paradigm different from the supervised
feedforward mapping.



Structure of Priors

MacKay: NIPS Tutorial 1997 “Have we thrown out the baby
with the bathwater?” (Published as MacKay, 1998) Also noted
by (Wilson et al., 2012)
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Deep Models
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Deep Gaussian Processes

Damianou and Lawrence (2013)

» Deep architectures allow abstraction of features (Bengio, 2009;
Hinton and Osindero, 2006; Salakhutdinov and Murray, 2008).

» We use variational approach to stack GP models.
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Deep GPs

\4

Stacking PPCA still leads to a linear latent variable model.

v

To stack latent variable models, need a non-linear model.
The GP-LVM is a non-linear latent variable model.
Stacking GP-LVM leads to hierarchical GP-LVM.

v

v



Bayesian GP-LVM

» Bayesian GP-LVM allows variational marginalization of X
and W.

< —52

» This leads to a Bayesian model where latent
dimensionality can be learnt.



Modeling Multiple ‘Views’

» Single space to model correlations between two different data
sources, e.g., images & text, image & pose.

» Shared latent spaces: (Shon et al., 2006; Navaratnam et al., 2007; Ek et al.,

2008b)

» Effective when the ‘views’ are correlated.
» But not all information is shared between both “views’.

» PCA applied to concatenated data vs CCA applied to data.



Shared-Private Factorization

> In real scenarios, the ‘views’ are neither fully independent, nor
fully correlated.

» Shared models

» either allow information relevant to a single view to be
mixed in the shared signal,
» or are unable to model such private information.

» Solution: Model shared and private information (Virtanen et al.,
2011; Ek et al., 2008a; Leen and Fyfe, 2006; Klami and Kaski, 2007, 2008; Tucker,

@ X @
o)

» Probabilistic CCA is case when dimensionality of Z matches Y?
(cf Inter Battery Factor Analysis (Tucker, 1958)).



Manifold Relevance Determination

Damianou et al. (2012)

;o"'ﬂ

7

A

X7
Y
XA

Y,
)

8

Peq




Shared GP-LVM

~
WA
(210

YA

W7
,/_,,g%?@
X7\
2

Separate ARD parameters for mappings to Y and Y®.



Motion Capture

» Revisit "high five’ data.
» This time allow model to learn structure, rather than
imposing it.



Deep hierarchies — motion capture

Y(l)

Deep Gaussian processes 38



Digits Data Set

» Are deep hierarchies justified for small data sets?
» We can lower bound the evidence for different depths.

» For 150 6s, Os and 1s from MNIST we found at least 5
layers are required.



Deep hierarchies — MNIST

Optimised
weights

R S

Outputs obtained
after sampling
from (certain nodes)
of layers 5,4,2,1

X Generic
P EEMANMNIN
1 encoding

’1‘4 A [A [A [A [A [&) [&)

X: [MAAIArArAMA

Local

:}Xl mmmmm@@ feature

N4 encoding

Deep Gaussian processes 37



Summary

» Gaussian models good for missing data.
» Disparate data types handled with EP and Laplace.

» Deep models allow complex abstract representation of
data sets at higher levels.

» Current limitation is on data set size.

» Addressing this through work by James Hensman on
Stochastic Variational Inference for GPs (recent UAI paper).

» Intention is to deploy these models for assimilating a wide
range of data types in personalized health (text, survival
times, images, genotype, phenotype).

» Requires population scale models with millions of features.
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