Statistical Methods for real-time monitoring of health outcomes

Peter J Diggle

CHICAS, Faculty of Health and Medicine, Lancaster University

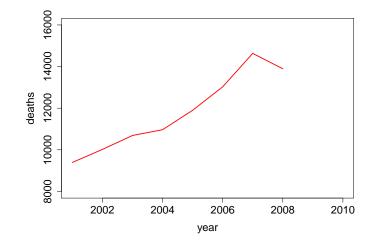
September 2015

Peter J Diggle Statistical Methods for real-time monitoring of health outcomes

- increasing availability of electronically recorded health outcome data
- community and/or individual level
- accruing in "real-time"
- often spatially referenced
- prediction and/or explanation
- case-studies:
 - monitoring progression towards end-stage renal failure
 - human and veterinary surveillance of gastro-enteric illness
 - local-scale malaria prevalence mapping

- (同) (目) (目) (目)

Chronic renal failure: UK mortality data



http://www.endoflifecare-intelligence.org.uk

Diagnosis, treatment and survival

Diagnosis

• Serum creatinine \Rightarrow estimated glomerular filtration rate

 $e\mathsf{GFR} = 186 \times \left(\frac{\mathsf{SCr}}{\mathsf{88.4}}\right)^{-1.154} \times age^{-0.203} (\times 0.742 \text{ if female})$

- progression can be asymptomatic for many years
- SCr easy to measure from blood-sample

Treatment and survival

- aggressive control of blood-pressure
- renal replacement therapy: dialysis and transplantation
- early diagnosis can slow rate of progression

12510Dialysis79.364.733.610.2Transplant (living)98.496.590.076.0		Survival rate (%) to year				
		1	2	5	10	
Transplant (living) 98.4 96.5 90.0 76.0	Dialysis	79.3	64.7	33.6	10.2	
	Transplant (living)	98.4	96.5	90.0	76.0	

Clinical guideline

Loss of > 5% eGFR per year \Rightarrow refer to secondary care

Data

- measurements Y_{ij} = log eGFR at times t_{ij}, explanatory variables x_i (age, sex)
 - i = 1, ..., m = 22,910 "at-risk" primary care patients

$$\bullet~j=1,...,n_i\leq 305$$
 (median $n_i=12)$

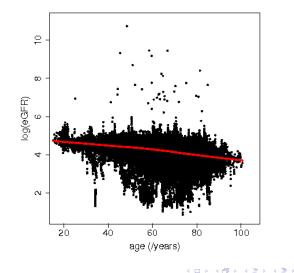
•
$$0 \leq 10.02$$
 years follow-up (median 4.46)

• $\mathcal{H}_i(t) = \{x_i, (t_{ij}, y_{ij}) : t_{ij} \leq t\}$

Statistical objective

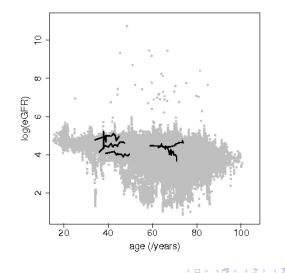
$$\mathbf{P}\left(\frac{d}{dt}\log\mathsf{GFR}<-0.05|\mathcal{H}_i(t)\right)=~?$$

Data: all cross-sectional

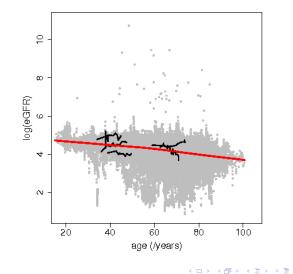


Peter J Diggle Statistical Methods for real-time monitoring of health outcomes

Data: all cross-sectional and selected longitudinal



Data: all cross-sectional and selected longitudinal



• subjects i = 1, ..., n observed at times $t_{ij}, j = 1, ...n_i$

$$Y_{ij} = log(eGFR)$$

- expected value of Y_{ij} linear in initial age and time since recruitment
- rate of progression varies randomly:
 - between subjects: random effect Ui
 - within subjects: random effect C_i(t_{ij})

- (同) (目) (目) (目)

Dynamic Regression Model

$$\begin{array}{rcl} \mathsf{Y}_{ij} &=& \alpha_0 + \alpha_1 \times \mathsf{I}(\mathsf{female}) \\ &+& \alpha_2 \times \mathsf{age}_{i1} + \alpha_3 \times (\mathsf{age}_{ij} - \mathsf{age}_{i1}) + \alpha_4 \times \mathsf{max}(0, \mathsf{age}_{ij} - \mathsf{56.5}) \\ &+& \mathsf{U}_i + \mathsf{C}_i(\mathsf{t}_{ij}) + \mathsf{Z}_{ij} \end{array}$$

- Z_{ij} : measurement error, $N(0, \tau^2)$
- U_i: between-subject random intercept, $N(0, \omega^2)$
- C_i(t): within-subject stochastic process

Model $C_i(t)$ as integrated Brownian motion

$$C_i(t) = \int_0^t B_i(u) du$$

$$\mathsf{B}_{i}(\mathsf{u})|\mathsf{B}_{i}(\mathsf{s}) \sim \mathbf{N}\left(\mathsf{B}_{i}(\mathsf{u}),(\mathsf{u}-\mathsf{s})\sigma^{2}\right)$$

 $B_i(u)$ is rate of progression for subject i at time t

- 不同 とうき とうき とうき

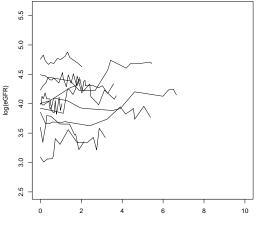
 $RE(\%) = 100(exp(\hat{\alpha}) - 1)$ corresponds to estimated annual percentage change in renal function.

Para	ameter	Estimate	SE	RE(%)
$lpha_0$	intercept	4.6006	0.0203	
$lpha_1$	female	-0.0877	0.0048	-8.4
α_2	age on entry	-0.0048	0.0004	-0.5
$lpha_3$	follow-up	-0.0232	0.0011	-2.3
$lpha_4$	age>56.5	-0.0075	0.0006	-0.6
ω^2	intercept	0.1111	0.0012	
σ^2	signal	0.0141	0.0002	
$ au^2$	noise	0.0469	0.0001	

▲□ → ▲ □ → ▲ □ → …

-

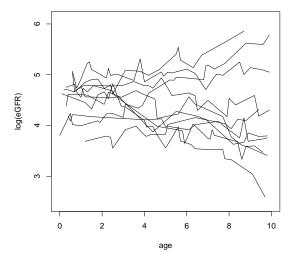
Sample data-sequences



age

Peter J Diggle Statistical Methods for real-time monitoring of health outcomes

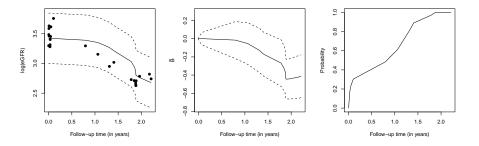
Simulations



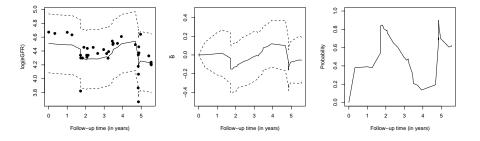
<ロ> <四> <四> <日> <日> <日</p>

æ

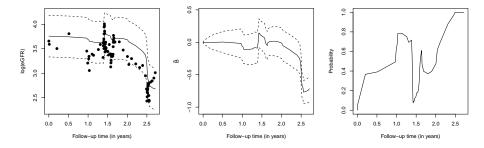
Prediction: classic progression pattern



Prediction: AKI (Acute Kidney Injury) recovery



Prediction: non-recovery from AKI



э

-

-

Field-testing: comparative evaluation against current methods

- eye-balling
- OLS fit to three most recent values

Informative follow-up: eGFR more likely to be measured when subject is in poor health

 \Rightarrow joint modelling of eGFR measurements and follow-up times

Implementation: in clinical practice...needs informatics expertise

(本語) (本語) (本語) (二語)

Reported UK annual incidence

Campylobacter	50,000
Salmonella	10,000
Cryptosporidium	5,000
Giardia	3,000
E Coli,	?

▲御▶ ▲臣▶ ▲臣▶ 三臣 - - のへで

AEGISS: Ascertainment and Enhancement of Gastroenteric Infection Surveillance Statistics

- largely sporadic incidence pattern
- concentration in population centres
- occasional "clusters" of cases

Can spatial statistical modelling enable earlier detection of "clusters"?

伺 とう きょう うちょう

-

 $\begin{array}{lll} \mbox{actual} & = & \mbox{expected} \times \mbox{unexpected} \\ \lambda({\rm x},{\rm t}) & = & \lambda_0({\rm x},{\rm t}) \times {\sf R}({\rm x},{\rm t}) \end{array}$

Scientific objective

- use incident data up to time t to construct predictive distribution for current "risk" surface, R(x, t),
- hence identify anomalies, for further investigation.

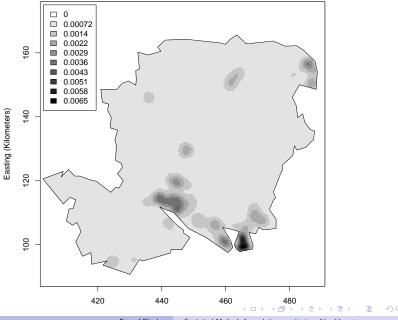
 $\lambda(\mathbf{x},t) = \lambda_0(\mathbf{x},t)\mathsf{R}(\mathbf{x},t)$

- $\lambda_0(\mathbf{x}, \mathbf{t}) = \lambda_0(\mathbf{x})\mu_0(\mathbf{t})$
- R(x,t) = exp{S(x,t)}
- S(x, t) = spatio-temporal Gaussian process

Conditional on R(x,t), incident cases form an inhomogeneous Poisson process with intensity $\lambda(x,t)$

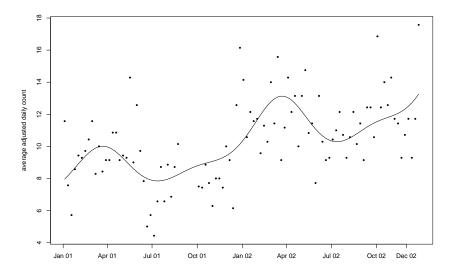
イボト イヨト イヨト 二日

 $\hat{\lambda}_0(\mathsf{x})$: adaptive kernel smoothing



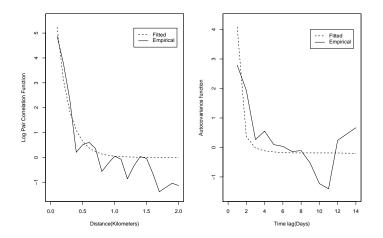
Peter J Diggle Statistical Methods for real-time monitoring of health outcomes

$\hat{\mu}_0(\mathbf{t})$: Poisson log-linear model



Peter J Diggle Statistical Methods for real-time monitoring of health outcomes

$\rho(\mathbf{u},\mathbf{v})=\rho_{\mathrm{x}}(\mathbf{u})\rho_{\mathrm{t}}(\mathbf{v})$



э

Spatial prediction

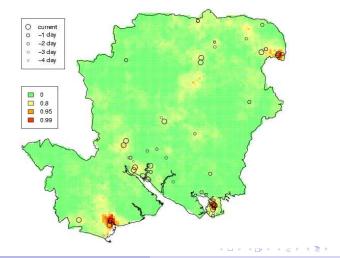
- plug-in for estimated model parameters
- MCMC to generate samples from conditional distribution of S(x, t) given data up to time t
- choose critical threshold value c>1
- map empirical exceedance probabilities,

 $p_t(x) = \mathrm{P}\left(exp\{S(x,t)\} > c | data\right)$

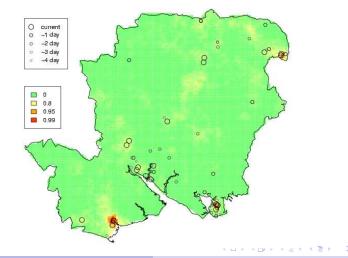
• web-based reporting with daily updates

(www.lancs.ac.uk/staff/diggle/aegiss/)

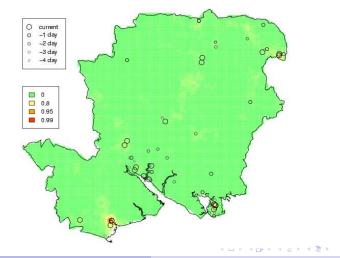
Spatial prediction: 6 March 2003



Spatial prediction: 6 March 2003



Spatial prediction: 6 March 2003



Fast-forward to 2015

- expand to national coverage
- integrate human and small-animal veterinary surveillance

BUT...

- replacement of single NHS Direct by multiple NHS111 services
- full post-code data no longer available!

SAVSNET: real-time data-feed from network of small-animal vet practices:

- practice location
- species (cat or dog)
- diagnosis

http://www.savsnet.co.uk/realtimedata/

- re-calibration of AEGISS model
- coarser spatial resolution...fitting spatially continuous models to spatially discrete data
- joint modelling of human and animal incidence
- implementation as part of routine surveillance systems

< 同 > < 回 > < 回 > …

-

Malaria prevalence mapping

Single prevalence survey

Sample n individuals, observe Y positives

 $Y \sim \mathrm{Bin}(n,p)$

Multiple prevalence surveys

Sample n_i individuals, observe Y_i positives, i = 1, ..., m

 $Y_i \sim \mathrm{Bin}(n_i,p_i) \ ?$

イボト イラト イラト 二戸

Extra-binomial variation

Sample n_i individuals, observe Y_i positives, i = 1, ..., m

$$\mathbf{Y}_i | \mathbf{d}_i, \mathbf{U}_i \sim \mathrm{Bin}(\mathbf{n}_i, \mathbf{p}_i) \quad \log\{\mathbf{p}_i/(1-\mathbf{p}_i)\} = \mathbf{d}_i' \boldsymbol{\beta} + \mathbf{U}_i$$

Question: What to do if the d_i and/or the U_i are spatially structured

• Latent spatially correlated process

 $\mathsf{S}(\mathsf{x}) \sim \mathrm{SGP}\{\mathsf{0}, \sigma^2,
ho(\mathsf{u}))\} \quad
ho(\mathsf{u}) = \exp(-|\mathsf{u}|/\phi)$

- Latent spatially independent random effects $U_i \sim iidN(0, \nu^2)$
- Linear predictor (regression model)

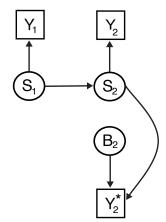
$$\begin{split} &d(x) = \text{environmental variables at location } x \\ &\eta(x_i) = d(x_i)'\beta + S(x_i) + U_i \\ &p(x_i) = \log[\eta(x_i)/\{1 - \eta(x_i)\}] \end{split}$$

• Conditional distribution for positive proportion Y_i/n_i

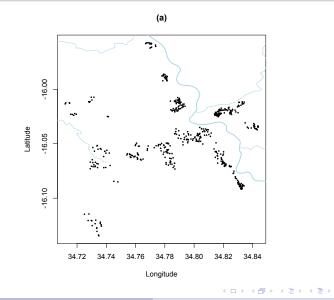
 $\boldsymbol{Y}_i|\boldsymbol{S}(\cdot) \sim \operatorname{Bin}\{\boldsymbol{n}_i, \boldsymbol{p}(\boldsymbol{x}_i)\}$ (binomial sampling)

Multiple surveys (Giorgi et al, 2015)

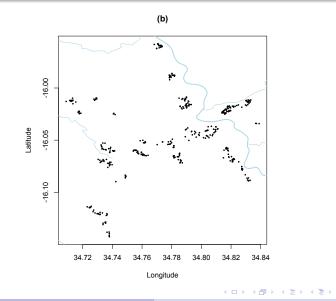
$$\begin{split} \text{Surveys: } i &= 1, \dots, r \quad \text{locations } x_{ij} : j = 1, \dots, n_i \\ \eta_{ij} &= d(x_{ij})^\top \beta_1 + S_i(x_{ij}) + I(i \in \mathcal{B})[B_i(x_{ij}) + d(x_{ij})'\beta_i] + U_{ij} \end{split}$$



Malaria mapping, Chikhwawa district, Malawi (Giorgi et al, 2015): rMIS individual locations

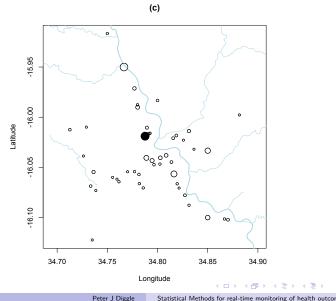


Malaria mapping, Chikhwawa district, Malawi (Giorgi et al, 2015): eMIS individual locations



Peter J Diggle Statistical Methods for real-time monitoring of health outcomes

Malaria mapping, Chikhwawa district, Malawi (Giorgi et al, 2015): EAG village locations and prevalences



Statistical Methods for real-time monitoring of health outcomes

Continuous time: rolling malaria indicator surveys

Hotspots: P(prevalence > 20%)

()

-

Continuous time: rolling malaria indicator surveys

Coldspots: P(prevalence < 5%)

()

-

Work-in-prospect: Majete national park project, Malawi

- adaptive design strategies
- embedded RCT of community-level interventions

Closing remarks

• Operational issues

- predictive probability of exceedance over intervention threshold
- to inform, but not to over-ride, clinical judgement

- Methodological issues:
 - observational studies vs trials
 - long series with irregular follow-up times
 - informative follow-up...marked point process models

▲□> < □> < □> □ ○Q()

Monitoring renal function

Diggle, P.J., Sousa, I. and Asar, Ö. (2014). Real-time monitoring of progression towards renal failure in primary care patients. (submitted)

Gastro-enteric surveillance

Diggle, P.J., Rowlingson, B. and Su, T-L. (2005). Point process methodology for on-line spatio-temporal disease surveillance. *Environmetrics*, **16**, 423–34.

Malaria prevalence mapping

Giorgi, E., Sesay, S.S., Terlouw, D.J. and Diggle, P.J. (2015). Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models. *Journal of the Royal Statistical Society* A **178**, 445–464.

イロト イポト イラト イラト 一日