Accounting for heterogeneity between individuals and single cells (using linear mixed models)

Machine Learning in Personalized Medicine Summer school 2015

Oliver Stegle European Bioinformatics Institute

Gene expression heterogeneity between individuals and single cells

variation of interest

population variation

genetic associations with phenotype

single-cell variation

differentiation processes Correlations between genes

Gene expression heterogeneity between individuals and single cells

variation of interest

confounding

population variation

single-cell variation

genetic associations with phenotype

differentiation processes Correlations between genes

Multi-omics association genetics

EMBL-EBI

Multi-omics association genetics

Multi-omics association genetics

HipSci Multi-omics association genetics

- Open access iPSC resource for the wider biomedical community
- Aims to discover how genetic variation affects cellular function in iPSC and leads to disease phenotypes

Big data in molecular genetics: statistical challenges and opportunities

- **Challenge**: Large-scale multiple testing problem:
 - Need to consider potentially millions of loci and adjust for multiple testing.
 - Account for confounding
 - Need appropriate corrections (e.g. False Discovery Rate)
 - Scalability to large cohorts (computation, not storage)

N=10

P=10⁶

P=10..10⁵

ATGACCTG**A**AACTGGGGGGACTGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGACTGACGTG**C**AACGGT ATGACCTG**C**AACTGGGGGGACTGACGTG**C**AACGGT ATGACCTG**C**AACTGGGGGGATTGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGATTGACGTG**C**AACGGT ATGACCTG**C**AACTGGGGGGATTGACGTG**C**AACGGT

EMBL-EBI

Big data in molecular genetics: statistical challenges and opportunities

- **Challenge**: Large-scale multiple testing problem:
 - Need to consider potentially millions of loci and adjust for multiple testing.
 - Account for confounding
 - Need appropriate corrections (e.g. False Discovery Rate)
 - Scalability to large cohorts (computation, not storage)
- Win: Large dataset allow to test modeling assumptions / fit better models
 - Inference of confounding structures
 - Not possible before large-scale hypothesis testing/large datasets
 - More power due to large datasets
 - Gain in power by joint analysis of multiple traits

N=10

ATGACCTG**A**AACTGGGGGGACTGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGACTGACGTG**C**AACGGT ATGACCTG**C**AACTGGGGGGACTGACGTG**C**AACGGT ATGACCTG**A**AACTGGGGGGATTGACGTG**G**AACGGT ATGACCTG**C**AACTGGGGGGATTGACGTG**C**AACGGT

P=10⁶

LINEAR MODEL

Flowering in A. thaliana

EMBL-EBI

Population structure (genetic)

Population structure (genetic)

EMBL-EBI

J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331

• genetic confounding (population structure)

LINEAR MODEL

N > 1,000

flowering time A. Thaliana

Flowering in A. thaliana

Flowering in A. thaliana

Applications of LMMs in genetics

$$\mathbf{y} \sim \mathcal{N}(\beta \mathbf{x}_i, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I}) \qquad \mathbf{K} = \mathbf{X} \mathbf{X}^{\mathrm{T}}$$

Association testing

$$\text{LLR} = 2\log \frac{\mathcal{N}\left(\mathbf{y} \mid \beta \mathbf{s}_{i}, \sigma_{g}^{2}\mathbf{K} + \sigma_{e}^{2}\mathbf{I}\right)}{\mathcal{N}\left(\mathbf{y} \mid \mathbf{0}, \sigma_{g}^{2}\mathbf{K} + \sigma_{e}^{2}\mathbf{I}\right)}$$

Heritability estimation

$$h = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$$

phenotype prediction

$$\hat{y^{\star}} = \mathbf{K}_{\star,\cdot} (\mathbf{K}_{\cdot,\cdot} + \delta \mathbf{I})^{-1} \mathbf{y}$$

Applications of LMMs in genetics

$$\mathbf{y} \sim \mathcal{N}(\beta \mathbf{x}_i, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I}) \qquad \mathbf{K} = \mathbf{X} \mathbf{X}^{\mathrm{T}}$$

Association testingHeritability estimationphenotype predictionLLR = 2 log
$$\frac{\mathcal{N}(\mathbf{y} \mid \beta \mathbf{s}_i, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I})}{\mathcal{N}(\mathbf{y} \mid \mathbf{0}, \sigma_g^2 \mathbf{K} + \sigma_e^2 \mathbf{I})}$$
 $h = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_e^2}$ $\hat{y^*} = \mathbf{K}_{\star,\cdot}(\mathbf{K}_{\cdot,\cdot} + \delta \mathbf{I})^{-1}\mathbf{y}$

Efficient inference methods to scale analysis to large cohorts

Extending linear mixed models

- Statistical challenges in high-dimensional association genetics
 - Normalization and scaling of quantitative trail Fusi et al., Nat Comm (2014)
 - Accounting for epistasis and non-linear genetic interactions Stephan et al., Nat Comm (2015)

1

Extending linear mixed models

- Statistical challenges in high-dimensional association genetics
 - Normalization and scaling of quantitative trail Fusi et al., Nat Comm (2014)
 - Accounting for epistasis and non-linear genetic interactions Stephan et al., Nat Comm (2015)
 - Joint modeling of multiple (correlated) traits

1

trait 1

Joint modelling of traits and variants

Joint modelling of traits and variants

Region-based testing

- rare variant associations
- accounting for allelic heterogeneity

Sotoodehnia et al, Nature Genetics (2010)

EMBL-EBI

Joint modelling of traits and variants

Joint modelling of traits and variants

phenotypes

covariates

SNPs

relatedness

noise

genetic variants

AGAACTGAACTTGGACCT. AGAACGGAACTTGGAGCT. AGAACGGAACTAGGACCT. AGAACTGAACTTGGAGCT. AGATCGGAACTAGGACCT. AGATCGGAACTAGGAGCT.

phenotypes

$$egin{array}{rcl} \mathbf{X} &=& \left[\mathbf{x}_{:,1},\ldots,\mathbf{x}_{:,F}
ight] \ &=& \left[\mathbf{x}_{1,:},\ldots,\mathbf{x}_{N,:}
ight]^{ op} \end{array}$$

 $\mathbf{Y} = [\mathbf{y}_{:,1}, \dots, \mathbf{y}_{:,T}] \\ = [\mathbf{y}_{1,:}, \dots, \mathbf{y}_{N,:}]^{\top}$

N =# samples T =# traits F =# snps

Linear model for trait t

$$\mathbf{y}_{:,t} = \sum_{k} \mathbf{g}_{:,k} w_{k,t} + \sum_{f} \mathbf{x}_{:,f} v_{f,t} + \boldsymbol{\psi}_{:,t}$$

Introducing MVN priors on weights and residuals and marginalizing out

Linear model for trait t

$$\mathbf{y}_{:,t} = \sum_{k} \mathbf{g}_{:,k} w_{k,t} + \sum_{f} \mathbf{x}_{:,f} v_{f,t} + \boldsymbol{\psi}_{:,t}$$

Introducing MVN priors on weights and residuals and marginalizing out

$$p(\mathbf{W}^{T}) = \prod_{k=1}^{K} \mathcal{N}\left(\mathbf{w}_{:,k} \mid \mathbf{0}, \mathbf{C}_{r}\right) \qquad p(\mathbf{V}^{T}) = \prod_{f} \mathcal{N}\left(\mathbf{v}_{f,:} \mid \mathbf{0}, \mathbf{C}_{g}\right)$$
$$p(\mathbf{\Psi}^{T}) = \prod_{n} \mathcal{N}\left(\boldsymbol{\psi}_{n,:} \mid \mathbf{0}, \boldsymbol{\Sigma}\right)$$

Linear model for trait *t*

p

$$\mathbf{y}_{:,t} = \sum_{k} \mathbf{g}_{:,k} w_{k,t} + \sum_{f} \mathbf{x}_{:,f} v_{f,t} + \boldsymbol{\psi}_{:,t}$$

Introducing MVN priors on weights and residuals and marginalizing out

$$p(\mathbf{W}^{T}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{w}_{:,k} \mid \mathbf{0}, \mathbf{C}_{r}) \qquad p(\mathbf{V}^{T}) = \prod_{f} \mathcal{N}(\mathbf{v}_{f,:} \mid \mathbf{0}, \mathbf{C}_{g})$$

$$p(\mathbf{\Psi}^{T}) = \prod_{n} \mathcal{N}\left(\psi_{n,:} \mid \mathbf{0}, \mathbf{\Sigma}\right)$$
Marginal likelihood
$$p(\mathbf{Y} \mid \mathbf{C}_{r}, \mathbf{R}_{r}, \mathbf{C}_{g}, \mathbf{R}_{g}, \mathbf{\Sigma}) = \mathcal{N}\left(\operatorname{vec}\left(\mathbf{Y}\right) \mid \mathbf{C}_{r} \otimes \mathbf{R}_{r} + \underbrace{\mathbf{C}_{g} \otimes \mathbf{R}_{g}}_{\operatorname{bg signal}} + \underbrace{\mathbf{\Sigma} \otimes \mathbf{I}}_{\operatorname{struct. noise}}\right)$$
Closely related to multi-task kernel models in ML
Rakitsch et al., NIPS 2008
$$\mathbf{R} \quad \mathbf{U} \quad \mathbf{\Psi}$$

EMBL-EBI
mtSet: aggregation across traits and causal variants

$$O(N^3 + N^2R + NR^2P^2 + NRP^4)$$

Challenge: Cubical scaling means such an algorithm is impractical for even moderately-size datasets!

tested SNPs << # samples</pre>

mtSet: aggregation across traits and causal variants O(N)

1.Casale, P. & Rakitsch, B. et a., Nature Methods (2015)

Efficient inference for large-scale GWAS

(human chrom20, 3,975 set tests for 4 traits)

Simulation study: aggregating across multiple causal variants and correlated traits

Accounting for relatedness

Analysis of lipid-related traits in Human

- N = 5,246
- 4 lipid traits: LDL, HDL, CRP, Trig

Analysis of lipid-related traits in Human

- *N* = 5,246
- 4 lipid traits: LDL, HDL, CRP, Trig

Analysis of lipid-related traits in Human

• N = 5,246

 $-\log_{10} pv$

• 4 lipid traits: LDL, HDL, CRP, Trig

multi-trait single-SNP model
Zhou et al, Nature Methods (2014)
Teslovich et al, Nature (2010)

Multi-omics association genetics

Multi-omics association genetics

Multi-omics association genetics

Association genetics with high-dimensional phenotypes

translation proteins $(\overline{y}_1, \overline{y}_2, \overline{y}_3, \overline{y}_3, \overline{y}_6, \overline{y}_6$

Association genetics with high-dimensional phenotypes

- translat
- statistical power
- false positives

organ-level phenotypes

Expression quantitative trait loci

Single marker genetic mapping

Stegle et. al PLoS Comp. Biol. 2010 Fusi et. al PLoS Comp. Biol. 2012 Stegle et. al Nat. Protoc. 2012

Why should we care about eQTLs?

Why should we care about eQTLs?

- Challenges:
 - Almost no direct evidence of gene->disease relationships
 - Overlaying eQTLs and GWAS is one of the key evidences
- Wins:
 - Even weak associations (genetic is) are useful.

Expression quantitative trait loci - accounting for row covariances

Single marker genetic mapping

Expression quantitative trait loci - accounting for row covariances

Single marker genetic mapping

Accounting for non-genetic sample heterogeneity increases power

▶ genetic

$$\Sigma = SS^{T}$$

▶genetic

$$\Sigma = SS^{T}$$

non-genetic

$$\boldsymbol{\Sigma} = \mathbf{Y}\mathbf{Y}^{\mathrm{T}}$$

Empirical gene expression covariance

Confounding factors: genetic and non-genetic structure

non-genetic (batch/env) senetic confounding (population structure)

Confounding factors: genetic and non-genetic structure

>non-genetic (batch/env) >genetic confounding (population structure)

Summary so far

- Linear mixed models help to adjust for non-IID sample structure such as relatedness and population structure.
- Both local and global genetic structure can be estimated from the genotype data itself.
- Multivariate modeling allows to exploit genetic covariances in different ways, including to test for the effect of local regions.
- If phenotypes are high-dimensional, non-genetic sample structure can be estimated from the phenotype data itself, allowing to account for environment factors or batch.

Accounting for heterogeneity is key...

(e)QTL mapping

 multiple phenotype models
variance components

Causality in molecular systems

 prediction of causal mediators
ordering of pathways

Accounting for heterogeneity is key...

(e)QTL mapping

 multiple phenotype models
variance components

Causality in molecular systems

 prediction of causal mediators
ordering of pathways

Single-cell transcriptomics

Gene expression heterogeneity between individuals and single cells

variation of interest

confounding

population variation

single-cell variation

genetic associations with phenotype

differentiation processes Correlations between genes

Single-cell RNA-Seq

- Conventional RNA-Seq profiles are obtained from a pool of typically ~100,000+ cells.
- Using single-cell RNA-sequencing technologies, we can now assay RNA abundance in single cells.

- novel variation between cells: cell type composition, differentiation
- additional (confounding) expression heterogeneity: cell cycle, apoptosis, ...

Fluidigm C1®

 Observed expression profiles do not enable recovering of the differentiation process.

EMBL-EBI

between cell cycle genes

and non-cycle genes

 Observed expression profiles do not enable recovering of the differentiation process. wide-spread correlation between cell cycle genes and non-cycle genes

Gene expression heterogeneity is not new...

Single-cell latent variable model (scLVM)

- Random effect model for cell cycle effects. Two-stage approach:
 - 1. Estimate a cell-cell covariance that captures cell cycle

Estimation of cell-cycle induced

Single-cell latent variable model (scLVM)

- Random effect model for cell cycle effects. Two-stage approach:
 - 1. Estimate a cell-cell covariance that captures cell cycle
 - 2. Account for cell cycle in
 - Variance decomposition
 - Gene-gene correlation analysis
 - Cell clustering

Estimating the cell cycle covariance

- Reconstruct cell cycle from the observed expression data
- Use known annotated cell cycle gene set

cell cycle gene	
genes	
General and the second s	

Estimating the cell cycle covariance

- Reconstruct cell cycle from the observed expression data
- Use known annotated cell cycle gene set
- Employ latent variable modeling to reconstruct a cell cycle factor (X)

Estimating the cell cycle covariance

- Reconstruct cell cycle from the observed expression data
- Use known annotated cell cycle gene set
- Employ latent variable modeling to reconstruct a cell cycle factor (X)

${ m Y}_{ m cc} \sim \prod$	$\left[\mathcal{N}(0 \mid$	$\mathbf{X}\mathbf{X}^{\mathrm{T}}$	+	$\delta_b \mathbf{I}$)
g	C	cell cycle covarianc	e re	sidual varia:	nce

Technical noise requires special attention

- Large proportions of technical variability due to low quantities of starting material
- Estimation of technical noise
 - Mean/variance fit from ERCC spike ins

Mean Counts

Brennecke et al. 2013

Technical noise requires special attention

- Large proportions of technical variability due to low quantities of starting material
- Estimation of technical noise
 - Mean/variance fit from ERCC spike ins
 - Extrapolation to genome-wide genes
 - 7,073 highly variable genes

Mean Counts

Brennecke et al. 2013

Technical noise requires special attention

- Large proportions of technical variability due to low quantities of starting material
- Estimation of technical noise
 - Mean/variance fit from ERCC spike ins
 - Extrapolation to genome-wide genes
 - 7,073 highly variable genes

Brennecke et al. 2013

Decomposing sources of gene expression variation

- Variance decomposition of gene expression, considering
 - cell cycle (using estimated covariance)
 - residual biological variability
 - technical noise (estimated via spike-ins)

Decomposing sources of gene expression variation

- Variance decomposition of gene expression, considering
 - cell cycle (using estimated covariance)
 - residual biological variability
 - technical noise (estimated via spike-ins)

$$\mathbf{Y}_{g} = \boldsymbol{\mu} \mathbf{I} + \boldsymbol{\alpha} \mathbf{u}_{cc} + \boldsymbol{\delta}_{b} \mathbf{u}_{b} + \mathbf{u}_{n}$$

$$N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu})$$

$$N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu}) N(0, \boldsymbol{\mu})$$

$$N(0, \boldsymbol{$$

Model validation on mouse ESCs

 To test our model, we used single-cell RNA-Seq data generated from ~300 ES cells collected at different stages of the cell cycle

Model validation on mouse ESCs

 To test our model, we used single-cell RNA-Seq data generated from ~300 ES cells collected at different stages of the cell cycle

scLVM accurately estimates variability due to the cell cycle.

Model validation on mouse ESCs

 To test our model, we used single-cell RNA-Seq data generated from ~300 ES cells collected at different stages of the cell cycle

- scLVM accurately estimates variability due to the cell cycle.
- Cell cycle effects are not visible on the model residuals.

Application to T-cell differentiation

- Focus on cells being differentiated in vitro from the naïve state towards the Th2 cell type
- 96 cells transcription profiled using the Fluidigm C1 system

Dissecting the sources of transcriptional variation

Technical noise

For 27% of the genes, variation of expression can be entirely explained by the (technical) null variability.

Cell-cycle

For 42% of the genes, >30% of the observed variance is explained by the cell cycle state.

The impact of cell cycle on gene-gene correlations

Gene-gene correlations (unadjusted)

> 500,000 edges

The impact of cell cycle on gene-gene correlations

Gene-gene correlations (unadjusted)

> 500,000 edges

Gene-gene correlations (adjusted for cell cycle)

~ 20,000 edges

The impact of cell cycle on gene-gene correlations

Gene-gene correlations (unadjusted)

GO.ID Term Annotated Significant Expected result1 G0:0006412 translation 416 55 6.49 8.0e-17 1 G0:0006414 translational elongation 45 13 0.70 1.2e-13 2 ribosomal small subunit assembly 10 GO:000028 6 0.16 2.8e-09 3 ADP biosynthetic process G0:0006172 8 5 0.12 4.8e-08 5 G0:0015986 17 6 ATP synthesis coupled proton transport 0.27 1.5e-07 > 500 G0:0006096 59 8 0.92 3.6e-06 6 glycolysis 92 G0:0006413 translational initiation 12 1.44 9.5e-06 21 GO:0001916 positive regulation of T cell mediated c... 5 0.33 1.5e-05 8 G0:0071353 cellular response to interleukin-4 22 5 0.34 1.9e-05 9 64Z 10 GO:0008284 positive regulation of cell proliferatio... Z8 10.02 Z.6e-05 11 GO:0000462 maturation of SSU-rRNA from tricistronic... 5 3 0.08 3.7e-05 12 GO:0015991 ATP hydrolysis coupled proton transport 25 5 0.39 3.7e-05 13 GO:0006662 glycerol ether metabolic process 13 4 0.20 3.7e-05 14 GO:0002474 antigen processing and presentation of p... 19 6 0.30 5.0e-05 15 G0:0042273 ribosomal large subunit biogenesis 14 4 0.22 5.2e-05

Gene-gene correlations (adjusted for cell cycle)

Discrimination between differentiated and undifferentiated cells

Non-linear PCA (unadjusted)

Discrimination between differentiated and undifferentiated cells

Non-linear PCA (unadjusted)

Non-linear PCA (adjusted for cell cycle)

Discrimination between differentiated and undifferentiated cells

 After cell cycle correction, cells appear to separate better into two groups than without correction.

- scLVM also enables learning multiple latent factors
 - Genes annotated for cell cycle

- scLVM also enables learning multiple latent factors
 - Genes annotated for cell cycle
 - Th2 differentiation marker genes

- scLVM also enables learning multiple latent factors
 - Genes annotated for cell cycle
 - Th2 differentiation marker genes

Extended variance component analysis

 $\mathbf{Y}_{g} = \boldsymbol{\mu} \mathbf{I} + \boldsymbol{\alpha} \mathbf{u}_{cc} + \boldsymbol{\beta} \mathbf{u}_{th2} + \boldsymbol{\delta}_{b} \mathbf{u}_{b} + \mathbf{u}_{n}$ $N(0, \mathbf{M}) N(0, \mathbf{M}) N(0, \mathbf{M}) N(0, \mathbf{M})$ $N(0, \mathbf{M}) N(0, \mathbf{M$

Th2 differentiation

928 genes with affected by the Th2 differentiation factor

Total non-technical variance

Th2 differentiation

928 genes with affected by the Th2 differentiation factor

- Th2/cell-cycle interaction 200 genes with interaction effects
- Enriched for positive cell proliferation negative regulation of apoptosis

Total non-technical variance

Th2 differentiation

928 genes with affected by the Th2 differentiation factor

- Th2/cell-cycle interaction 200 genes with interaction effects
- Enriched for positive cell proliferation negative regulation of apoptosis

Closing comments

- Random effect covariance models can be flexibly applied to account for different levels of sample heterogeneity
- (e)QTL analysis
 - population structure & env. /technical confounding to improve power and accuracy
- Single-cell RNA-seq analysis
 - a small number of genes with known cell cycle annotation is sufficient to estimate a cell covariance due to cell cycle
 - more compact gene-gene correlations
 - detection of genes with interactions involving multiple biological processes

Acknowledgments

Amelie Baud **Florian Büttner Paolo Casale** Danilo Horta Christof Angermüller Helena Kilpinen Yuanhua Huang Sung-Hee Park **Barbara Rakitsch**

John Marioni Antonio Scialdone

Sarah Teichmann Kedar Natarajan Valerie Proserpio <u>Helmholtz Munich</u> Fabian Theis

<u>University of Shefifeld</u> Neil Lawrence **Nicolo Fusi**

<u>Microsoft Resarch</u> Nicolo Fusi

Human Longevity INC Christoph Lippert <u>Sanger</u> Thierry Voet Iain Macaulay

<u>Babraham Inst.</u> Heather Lee Stephen Clark Wolf Reik Gavin Kelsey

EMBO

Mixed model inference: <u>https://github.com/PMBio/limix</u>

Single cell latent variable model: https://github.com/PMBio/scLVM

Tutorial pointers

https://github.com/PMBio/limix-tutorials

https://github.com/PMBio/scLVM/tree/master/R/tutorials

Tutorial pointers

- Practical to use LIMIX for genetic analyses: https://github.com/PMBio/limix-tutorials
- R version of scLVM, recommended for R users:

https://github.com/PMBio/scLVM/tree/master/R/tutorials

Tutorial pointers

- Practical to use LIMIX for genetic analyses: https://github.com/PMBio/limix-tutorials
- R version of scLVM, recommended for R users:

https://github.com/PMBio/scLVM/tree/master/R/tutorials

 scLVM python module & ipython notebooks with an example that interfaces to GPy.

https://github.com/PMBio/scLVM/blob/master/tutorials/tcell_demo.ipynb

> git clone git@github.com:PMBio/scLVM.git

- > cd scLVM/tutorials
- > ipython notebook ./tcell_demo.ipynb
- GPy example on non-linear dimensionality reduction applied to single-cell RNA-Seq

https://github.com/SheffieldML/notebook/blob/master/compbio/SingleCellDataWithGPyTutorial.ipynb

