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Big data in molecular genetics: 
statistical challenges and opportunities

• Challenge:	  Large-‐scale	  multiple	  testing	  
problem:	  
– Need	  to	  consider	  potentially	  millions	  of	  loci	  

and	  adjust	  for	  multiple	  testing.	  
– Account	  for	  confounding	  
– Need	  appropriate	  corrections	  (e.g.	  False	  

Discovery	  Rate)	  
– Scalability	  to	  large	  cohorts	   

(computation,	  not	  storage)
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• Win:	  Large	  dataset	  allow	  to	  test	  
modeling	  assumptions	  /	  fit	  better	  
models	  
– Inference	  of	  confounding	  structures	  
– Not	  possible	  before	  large-‐scale	  hypothesis	  

testing/large	  datasets	  
– More	  power	  due	  to	  large	  datasets	  
– Gain	  in	  power	  by	  joint	  analysis	  of	  multiple	  traits
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‣Population structure (genetic)
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J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331 
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Association testing Heritability estimation phenotype prediction

Applications of LMMs in genetics

§ Efficient inference methods to scale analysis to large cohorts
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Zhou & Stephens. Nature genetics 44.7 (2012): 821-824.

Lippert et al. Nature Methods 8.10 (2011): 833-835.



Extending linear mixed models

§ Statistical challenges in high-dimensional association genetics

§ Normalization and scaling of quantitative traits
1.Fusi et al., Nat Comm (2014)

Oliver Stegel
PhD in Physics, University of Cambridge, 2009. 
Postdoctoral Fellow, Max Planck Institutes 
Tübingen, 2009–2012. 

Research Group Leader at EMBL-EBI since 
November 2012Stegle group 

Our interest lies in computational approaches to unravel the genotype–
phenotype map on a genome-wide scale. How do genetic background and 
environment jointly shape phenotypic traits or causes diseases? How are 
genetic and external factors integrated at different molecular layers, and how 
variable are these molecular readouts between individual cells?

We use statistics as our main tool to answer these questions. 
To make accurate inferences from high-dimensional ‘omics 
datasets, it is essential to account for biological and technical 
noise and to propagate evidence strength between different 
steps in the analysis. To address these needs, we develop 
statistical analysis methods in the areas of gene regulation, 
genome wide association studies (GWAS) and causal 
reasoning in molecular systems. 

Our methodological work ties in with experimental 
collaborations and we are actively developing methods to fully 
exploit large-scale datasets that are obtained using the most 
recent technologies. In doing so, we derive computational 
methods to dissect phenotypic variability at the level of the 
transcriptome and the proteome and we derive new tools for 
single-cell biology.

Major achievements
In 2014 we developed and applied methods for linking 
genetic variation data and phenotype. In collaboration with 
researchers at Microsoft Research, we devised new methods 
to model phenotype data on an unknown linear scale. By 
combining principles from genetic association studies with 
non-linear regression models, we improved the genetic 
analysis of quantitative traits, thereby revealing more clearly 
how genetic differences shape phenotypic diversity (Fusi et  
al., 2014).

In addition to developing new methods for genetic association 
analysis, we started work in the area of single-cell genomics. 
Together with colleagues at the Babraham Institute, we 
showed how single-cell epigenomes can be profiled using 
a combination of experimental advances and statistics 
(Smallwood et al., 2014). In parallel, we collaborated with 
the Marioni and Teichmann groups at EMBL-EBI to devise 
new ways to dissect transcriptional heterogeneity between 
single cells (Buettner et al., 2015). Our approach, for the first 
time, enables modeling both known and unknown factors that 
underlie single-cell transcriptome variation. This method 
has already helped to identify new sub-clusters of cells in 
single-cell RNA-Seq studies and will be an important building 
block for our future endeavours.

Statistical genomics & 
systems genetics  

Future plans
In 2015 we will continue to develop innovative statistical 
approaches to analyze data from high-throughput genetic and 
molecular profiling studies. We are particularly interested in 
following up our recent efforts to model single-cell variation 
data. A major challenge in this area will be the integration 
of multiple modalities in single-cell genomics, for example 
linking single-cell epigenome variation with single-cell 
RNA-Seq. We are particularly interested in applying these 
methods to data from the Human Induced Pluripotent Stem 
Cell Initiative (HipSci), in which we are a partner.

Selected publications
Fusi N, Lippert C, Lawrence ND, Stegle O (2014). Warped 
linear mixed models for the genetic analysis of transformed 
phenotypes. Nat Commun 5:4890

Smallwood SA, Lee HJ, Angermueller C, et al. (2014) 
Single-cell genome-wide bisulfite sequencing for assessing 
epigenetic heterogeneity. Nat Methods 11:817-820

Cubillos FA, Stegle O, Grondin C, et al. (2014) Extensive 
cis-regulatory variation Robust to environmental perturbation 
in Arabidopsis. Plant Cell 26: 4298-4310

Illustration of causal molecular pathways that link genetic and environmental factors to global 
phenotypes such as fitness or disease (figure adapted from Gagneur et al., 2013). Statistical 
approaches allow for distinguishing functional molecular intermediates (mediating genes) from 
merely correlated markers (non-mediating genes).
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§ Accounting for epistasis and non-linear genetic interactions
1.Stephan et al., Nat Comm (2015)
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Extending linear mixed models

§ Statistical challenges in high-dimensional association genetics

§ Joint modeling of multiple (correlated) traits  
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§ Normalization and scaling of quantitative traits
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number of loci associated with QRS duration, supporting the hypo-
thesis of the contribution of common genetic variation in QRS dura-
tion7–9. To identify additional loci and highlight physiologic processes 
associated with ventricular conduction, we performed a meta-analysis 
of 14 genome-wide association studies (GWAS) of QRS duration in 
a total of 40,407 individuals of European descent, where we adjusted 
the analyses for age, sex, height and body mass index (BMI) after 
appropriate sample exclusions (Online Methods). After an initial dis-
covery phase, we further genotyped selected variants representing 
nine loci with P values ranging from P = 1 × 10−6 to P = 5 × 10−9 in 
an additional cohort of 7,170 European individuals.

RESULTS
Meta-analysis of genome-wide association results
We conducted meta-analyses for approximately 2.5 million 
SNPs in 40,407 individuals of European ancestry from 14 GWAS 
(Supplementary Table 1a,b). Overall, 612 variants in 20 loci 
exceeded our genome-wide significance P value threshold of P = 5 × 
10−8 after adjusting for modest genomic inflation (genomic inflation 
factor ( GC) = 1.059) (Fig. 1 and Supplementary Fig. 1). The loci 
associated with QRS interval duration are detailed in Table 1 and 
Supplementary Figure 2, with the index SNP (representing the most 
significant association) labeled for each independent signal.

Across the genome, the most significant association for QRS inter-
val duration (termed locus 1) was on chromosome 3p22 (Fig. 2a), 
where we identified six potentially independent association signals 
based on the linkage disequilibrium (LD) patterns in the HapMap 
European CEU population (pairwise r2 among all index SNPs was 
<0.05). In conditional analyses where all six SNPs were included in 
the same regression model, there was compelling evidence that at least 
four SNPs from this region were independently associated with QRS 
duration (Table 1). Two of these associations were in or near SCN10A, 
which encodes a voltage-gated sodium channel. Variation at this locus 
was recently associated with QRS duration in two GWAS. The top SNP 
identified in those two studies, rs6795970, is in strong LD with our top 
signal, rs6801975 (r2 = 0.93)8,9. Two additional signals were identified 
in SCN5A, a sodium channel gene adjacent to SCN10A (Table 1).

The second most significant locus (locus 2) was on chromosome 
6p21 near CDKN1A, which encodes a cyclin-dependent kinase inhibi-
tor. The CDKN1A locus was recently associated with QRS interval 
duration in an Icelandic population9. The index SNP in the prior 
report, rs1321311, is in strong LD with our top signal, rs9470361 (r2 =  
0.88). CDKN2C, which encodes another cyclin-dependent kinase 
inhibitor, is located in locus 15, which encompasses several other 
genes, including C1orf185, RNF11 and FAF1.

Locus 3 on chromosome 6q22 contains the PLN-SLC35F1-
C6orf204-BRD7P3 cluster of genes. PLN encodes phospholamban, a 
key regulator of sarcoplasmic reticulum calcium reuptake. Significant 
associations were found in several other regions harboring calcium-
handling genes, including locus 12 (STRN-HEATR5B), locus 16 
(PRKCA) and locus 18 (CASQ2).

Locus 4 mapped to an intronic SNP in NFIA, which encodes a tran-
scription factor. Several other significant loci also mapped in or near 

genes encoding transcription factors, including locus 5 (HAND1), 
locus 6 (TBX20), locus 8 (TBX5), locus 9 (TBX3) and locus 19  
(KLF12). Common variation in TBX5 was recently associated with 
QRS duration9. The index signal in the prior report, rs3825214, was 
in moderate LD with our top signal, rs883079 (r2 = 0.67).

Additional regions identified include locus 7 (SIPA1L1), locus 10 
(VTI1A), locus 11 (SETBP1), locus 13 (TKT-CACNA1D-PRKCD), 
locus 14 (CRIM1), locus 17 (the nearest gene, IGFBP3, is 660 kb away) 
and locus 20 (LRIG1).

Collectively, the identified index SNPs across these 20 loci explained 
approximately 5.7% (  2.3% (s.d.)) of the observed variance in QRS 
duration, consistent with a polygenic model in which each of the 
discovered variants exerts only a modest effect on QRS interval. None 
of these index SNPs showed a significant interaction with sex or age 
after Bonferroni correction (Supplementary Table 2). We observed 
moderate levels of heterogeneity of the effect (25 < I2 < 75) for several 
index SNPs (Table 1). However, only HAND1-SAP30L showed signifi-
cant evidence of heterogeneity using Cochran’s Q test corrected for 23 
independent genome-wide variants (Cochran’s P = 0.005).

Extension of findings in an additional 7,170 individuals
Based on the discovery meta-analysis, we selected the index SNPs at 
four loci (loci 15, 17, 19 and 20) with P values ranging between P = 
5 × 10−8 and P = 5 × 10−9 and from all five loci with P values ranging 
from P = 1 × 10−6 to P = 5 × 10−8 (Online Methods) for genotyping in 
an additional 7,170 European individuals in order to boost the study’s 
power. In a joint analysis combining all 47,577 individuals, the signifi-
cance for the four loci with P values between P = 5 × 10−8 and P = 5 × 
10−9 increased, indicating these represent true positive associations 
(Table 1). The joint analysis also provided further evidence for two 
other loci (locus 21 near DKK1 and locus 22 tagged by an intronic SNP 
in GOSR2) that reached genome-wide significance, bringing the total 
number of significant loci to 22, with 25 independently associated 
index SNPs (Table 1). The index SNP (rs1733724) in DKK1 was previ-
ously associated with QRS duration in an Icelandic population9.

Association with conduction defect
Based on this series of QRS associations, we sought to test the hypothesis 
that QRS-prolonging alleles, on average, increase risk of ventricular 
conduction defects. To address this question, we calculated a risk 
score in each individual by adding up the number of QRS-prolonging 
 alleles identified in this study weighted by the observed effect sizes (  
estimates) from the final meta-analysis. In an independent set of 519 
individuals from the Atherosclerosis Risk in Communities (ARIC) 
and Rotterdam (RS) studies with bundle branch block or nonspecific 
prolongation of QRS interval (QRS > 120 milliseconds (ms)) com-
pared with those individuals with normal conduction (N = 12,804), we 
found evidence that the cumulative burden of QRS-prolonging alleles 
is associated with risk of ventricular conduction defect (P = 0.004). 
This result was largely driven by those individuals with nonspecific 
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Figure 1 Manhattan plot. Manhattan plot showing the association of SNPs 
with QRS interval duration in a GWAS of 40,407 individuals. The dashed 
horizontal line marks the threshold for genome-wide significance (P = 5 ×  
10−8). Twenty loci (labeled) reached genome-wide significance. Two 
additional loci, GOSR2 and DKK1, reached significance after genotyping 
of select SNPs in an additional sample of 7,170 individuals (see results 
section of the main text).

Region-based testing

Sotoodehnia et al, Nature Genetics (2010)
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§ rare variant associations 
§ accounting for allelic heterogeneity
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mtSet: aggregation across traits and causal 
variants

3
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Challenge: Cubical scaling means such an algorithm
is impractical for even moderately-size datasets!
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Simulation study: aggregating across multiple 
causal variants and correlated traits
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multiple causal variants correlation between traitsSupplementary Figure 6 Power comparison of alternative methods on simulated data from
1000 Genomes Project genotypes. Shown is power at 10% family-wise error rate for mtSet, stSet,
mtSet-PC, mtLMM-SV and stLMM-SV varying di↵erent simulation parameters. Specifically, we altered
the proportions of variance explained by the region (h2

r), the numbers of causal variants in the region
(Sr), the percentages of shared causal variants (⇡r), the proportions of variance explained by genetic
background (h2

g), the percentage of residual variance explained by hidden confounders (�), and the
percentage of background and residual signal that is shared across traits (↵) (see also Table 2). See
Methods for details on the simulation procedure and the evaluation scheme.
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‣Single marker genetic mapping
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§ Challenges: 
• Almost no direct evidence of gene->disease relationships 
• Overlaying eQTLs and GWAS is one of the key evidences 

• Wins: 
• Even weak associations (genetic is) are useful.
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eng. variants

GWAS
cQTLeQTL

QTL

CRISPR
screen

known drug 
targets
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‣Single marker genetic mapping

Expression quantitative trait loci 
- accounting for row covariances

‣Single marker genetic mapping
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‣Single marker genetic mapping

‣Accounting for non-genetic sample heterogeneity 
increases power

Expression quantitative trait loci 
- accounting for row covariances
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Accounting for genetic and non-genetic 
sample covariance
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Fusi, N. & Stegle, O. et al. PLoS Computational Biology, 2012
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‣Empirical gene 
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Summary so far

• Linear mixed models help to adjust for non-IID sample structure 
such as relatedness and population structure.

• Both local and global genetic structure can be estimated from 
the genotype data itself.

• Multivariate modeling allows to exploit genetic covariances in 
different ways, including to test for the effect of local regions.

• If phenotypes are high-dimensional, non-genetic sample 
structure can be estimated from the phenotype data itself, 
allowing to account for environment factors or batch.



Accounting for heterogeneity is key…

Causality in 
molecular systems
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UK human iPS cell consortium: genotype to 
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Single-cell RNA-Seq

§ Conventional RNA-Seq profiles are obtained from a 
pool of typically ~100,000+ cells. 

Fluidigm C1®

§ Using single-cell RNA-sequencing technologies, we 
can now assay RNA abundance in single cells.

§ novel variation between cells: 
cell type composition, differentiation

§ additional (confounding) expression 
heterogeneity: cell cycle, apoptosis, …
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Gene expression heterogeneity is not new…
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‣Estimate  
‣Population structure: 
genotype data 
‣Environment/batch: gene 
expression levels

⌃

‣Correct for      using mixed models 
‣“Rotate” phenotypes & genotypes

⌃

Leek & Storey, 2007
Kang et al. 2008
Listgarten et al, 2010 
Lipper et al. 2011
Stegle* & Parts* et al. 2010, 2012 
Fusi* & Stegle* et al. 2012



Single-cell latent variable model (scLVM)

§ Random effect model for cell 
cycle effects. Two-stage 
approach:  

1. Estimate a cell-cell 
covariance that captures 
cell cycle 

2. Account for cell cycle in 
• Variance 

decomposition 
• Gene-gene correlation 

analysis 
• Cell clustering

6524 genes not annotated
 to cell cycle

128899 significant correlations between 
cell cycle and non cell-cycle genes
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§ Reconstruct cell cycle from the 
observed expression data

ESC development on single-cell level

[Guo et al., Dev Cell 18, 2010]

unequivocally reveals the three cell types known to exist at this
stage (Figure 1A). Ninety-five cells (60%) were highly enriched
in TE-specific markers such as Cdx2 and Krt8. Forty cells

(25%) were specifically enriched in the PE markers Gata4 and
Pdgfra, and eighteen cells (11%) were specifically enriched in
EPI-restricted genes including Nanog and Sox2. Interestingly,
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Figure 1. Three Molecularly Defined Populations at the !64-Cell Stage
(A) A heat map of expression levels for 48 genes (see also Figure S1 and Table S2 for how these were selected) from 159 individual cells collected from !64-cell

stage blastocyst. Cells are defined as trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE) based on their expression of known markers Cdx2, Nanog,

and Gata4, respectively. The asterisk (*) marks five transitional cells with PE and EPI expression characteristics.

(B) Principal component (PC) projections of the 159!64-cell stage cells colored according to their embryo of origin. Encircled by a dashed line are the same five

cells marked by an asterisk in (A).

(C) PC projections of the 48 genes, showing the contribution of each gene to the first two PCs. The first PC can be interpreted as discriminating between TE and

ICM; the second between PE and EPI. The position of endogenous control genes Actb (blue) and Gapdh (red) are shown.
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§ Employ latent variable 
modeling to reconstruct a cell 
cycle factor (X)

§ Reconstruct cell cycle from the 
observed expression data

ESC development on single-cell level

[Guo et al., Dev Cell 18, 2010]
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§ Employ latent variable 
modeling to reconstruct a cell 
cycle factor (X)

§ Reconstruct cell cycle from the 
observed expression data

ESC development on single-cell level

[Guo et al., Dev Cell 18, 2010]
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Technical noise requires special attention

§ Large proportions of technical 
variability due to low quantities of 
starting material 

§ Estimation of technical noise 
• Mean/variance fit from ERCC  

spike ins
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Technical noise requires special attention

§ Large proportions of technical 
variability due to low quantities of 
starting material 

§ Estimation of technical noise 
• Mean/variance fit from ERCC  

spike ins

• Extrapolation to genome-wide genes 
• 7,073 highly variable genes
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Technical noise requires special attention

§ Large proportions of technical 
variability due to low quantities of 
starting material 

§ Estimation of technical noise 
• Mean/variance fit from ERCC  

spike ins

• Extrapolation to genome-wide genes 
• 7,073 highly variable genes
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Decomposing sources of gene expression 
variation

§ Variance decomposition of gene expression, considering 
• cell cycle (using estimated covariance) 
• residual biological variability 
• technical noise (estimated via spike-ins)
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Model validation on mouse ESCs
§ To test our model, we used single-cell RNA-Seq data generated 

from ~300 ES cells collected at different stages of the cell cycle

PCA on expression of staged cells



Model estimates versus Hoechst staining

Model validation on mouse ESCs
§ To test our model, we used single-cell RNA-Seq data generated 

from ~300 ES cells collected at different stages of the cell cycle

PCA on expression of staged cells

§ scLVM accurately estimates variability due to the cell cycle. 



Model validation on mouse ESCs

§ Cell cycle effects are not visible on the model residuals.

§ To test our model, we used single-cell RNA-Seq data generated 
from ~300 ES cells collected at different stages of the cell cycle

PCA on expression of staged cells

§ scLVM accurately estimates variability due to the cell cycle. 

PCA on cell cycle adjusted data



Application to T-cell differentiation

Helminth,  
Allergy 

Bacteria,  
Fungi 

Bacteria,  
Viruses, 

Suppression, 
Tolerance 

IL4, IL13…. IFNg…. IL17…. IL10,TGF-b1… 

§ Focus on cells being differentiated in vitro from the naïve state 
towards the Th2 cell type 

§ 96 cells transcription profiled using the Fluidigm C1 system



Dissecting the sources of transcriptional 
variation 

§ Technical noise 
For 27% of the genes, variation 
of expression can be entirely 
explained by the (technical) null 
variability. 

§ Cell-cycle  
For 42% of the genes, >30% of 
the observed variance is 
explained by the cell cycle state. 



The impact of cell cycle on gene-gene 
correlations

Gene-gene correlations (unadjusted) 

>	  500,000	  edges	  



The impact of cell cycle on gene-gene 
correlations

Gene-gene correlations (unadjusted) 

>	  500,000	  edges	  

Gene-gene correlations (adjusted for cell cycle) 

~	  20,000	  edges	  



The impact of cell cycle on gene-gene 
correlations

Gene-gene correlations (unadjusted) 
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Discrimination between differentiated and 
undifferentiated cells

Non-linear PCA (unadjusted) 
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Discrimination between differentiated and 
undifferentiated cells

Non-linear PCA (unadjusted) 
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§ After cell cycle correction, cells appear to separate 
better into two groups than without correction.



Are the identified subpopulations meaningful?
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Are the identified subpopulations meaningful?
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§ 401 Genes differentially expressed 
§ Strikingly enriched in Th2 markers
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Can we better tease apart the effect of cell 
cycle and differentiation ? 

§ Genes annotated for cell cycle

ESC development on single-cell level

[Guo et al., Dev Cell 18, 2010]

unequivocally reveals the three cell types known to exist at this
stage (Figure 1A). Ninety-five cells (60%) were highly enriched
in TE-specific markers such as Cdx2 and Krt8. Forty cells

(25%) were specifically enriched in the PE markers Gata4 and
Pdgfra, and eighteen cells (11%) were specifically enriched in
EPI-restricted genes including Nanog and Sox2. Interestingly,
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Figure 1. Three Molecularly Defined Populations at the !64-Cell Stage
(A) A heat map of expression levels for 48 genes (see also Figure S1 and Table S2 for how these were selected) from 159 individual cells collected from !64-cell

stage blastocyst. Cells are defined as trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE) based on their expression of known markers Cdx2, Nanog,

and Gata4, respectively. The asterisk (*) marks five transitional cells with PE and EPI expression characteristics.

(B) Principal component (PC) projections of the 159!64-cell stage cells colored according to their embryo of origin. Encircled by a dashed line are the same five

cells marked by an asterisk in (A).

(C) PC projections of the 48 genes, showing the contribution of each gene to the first two PCs. The first PC can be interpreted as discriminating between TE and

ICM; the second between PE and EPI. The position of endogenous control genes Actb (blue) and Gapdh (red) are shown.

Developmental Cell

Single-Cell Expression from Zygote to Blastocyst

Developmental Cell 18, 675–685, April 20, 2010 ª2010 Elsevier Inc. 677

cells

tra
ns

cr
ip

ts

genes

ce
lls

cell c
ycl

e genes

§ scLVM also enables learning 
multiple latent factors



Can we better tease apart the effect of cell 
cycle and differentiation ? 

§ Genes annotated for cell cycle

ESC development on single-cell level

[Guo et al., Dev Cell 18, 2010]

unequivocally reveals the three cell types known to exist at this
stage (Figure 1A). Ninety-five cells (60%) were highly enriched
in TE-specific markers such as Cdx2 and Krt8. Forty cells

(25%) were specifically enriched in the PE markers Gata4 and
Pdgfra, and eighteen cells (11%) were specifically enriched in
EPI-restricted genes including Nanog and Sox2. Interestingly,

A

Creb3l2
Tcf23
Snai1

Pdgfra
Gata4
Sox13

Klf5
Tcfap2c

Gapdh
Actb

Pdgfa
Msc

Hand1
Runx1
Gata6
Fgfr2
Dab2
Msx2

Hnf4a
Pou5f1

Utf1
Sall4
Ahcy

Sox17
Klf4

Fgf4
Klf2

Esrrb
Nanog
Bmp4
Sox2

Fn1
Pecam1
Tspan8

Dppa1
Lcp1
Aqp3

Id2
Krt8

Cebpa
Eomes
Gata3
Mbnl3

Tcfap2a
Grhl1

Atp12a
Grhl2
Cdx2

-5 0 5 10
Value

Color Key

TE
EPI PE

*

PC1 score

P
C

2 
sc

or
e

B

20100-10-20

-10

0

10

20

TE

EPI

PE

Bmp4
Fgf4

Klf2

Nanog

Pou5f1

Sox2

Gata4
Gata6 Pdgfra

Runx1

Dppa1

Fgfr2

Id2
Krt8

Creb3l2

Tspan8

Dab2

PC1 loading

P
C

2 
lo

ad
in

g

C 0.4

0.2

0.0

-0.2

-0.2-0.3 -0.1 0.0 0.1 0.2 0.3 0.4

Figure 1. Three Molecularly Defined Populations at the !64-Cell Stage
(A) A heat map of expression levels for 48 genes (see also Figure S1 and Table S2 for how these were selected) from 159 individual cells collected from !64-cell

stage blastocyst. Cells are defined as trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE) based on their expression of known markers Cdx2, Nanog,

and Gata4, respectively. The asterisk (*) marks five transitional cells with PE and EPI expression characteristics.

(B) Principal component (PC) projections of the 159!64-cell stage cells colored according to their embryo of origin. Encircled by a dashed line are the same five

cells marked by an asterisk in (A).

(C) PC projections of the 48 genes, showing the contribution of each gene to the first two PCs. The first PC can be interpreted as discriminating between TE and

ICM; the second between PE and EPI. The position of endogenous control genes Actb (blue) and Gapdh (red) are shown.

Developmental Cell

Single-Cell Expression from Zygote to Blastocyst

Developmental Cell 18, 675–685, April 20, 2010 ª2010 Elsevier Inc. 677

cells

tra
ns

cr
ip

ts

genes

ce
lls

cell c
ycl

e genes

§ scLVM also enables learning 
multiple latent factors

TH2 diff. 
marke

rs

§ Th2 differentiation marker genes



Can we better tease apart the effect of cell 
cycle and differentiation ? 

§ Genes annotated for cell cycle

ESC development on single-cell level

[Guo et al., Dev Cell 18, 2010]

unequivocally reveals the three cell types known to exist at this
stage (Figure 1A). Ninety-five cells (60%) were highly enriched
in TE-specific markers such as Cdx2 and Krt8. Forty cells

(25%) were specifically enriched in the PE markers Gata4 and
Pdgfra, and eighteen cells (11%) were specifically enriched in
EPI-restricted genes including Nanog and Sox2. Interestingly,

A

Creb3l2
Tcf23
Snai1

Pdgfra
Gata4
Sox13

Klf5
Tcfap2c

Gapdh
Actb

Pdgfa
Msc

Hand1
Runx1
Gata6
Fgfr2
Dab2
Msx2

Hnf4a
Pou5f1

Utf1
Sall4
Ahcy

Sox17
Klf4

Fgf4
Klf2

Esrrb
Nanog
Bmp4
Sox2

Fn1
Pecam1
Tspan8

Dppa1
Lcp1
Aqp3

Id2
Krt8

Cebpa
Eomes
Gata3
Mbnl3

Tcfap2a
Grhl1

Atp12a
Grhl2
Cdx2

-5 0 5 10
Value

Color Key

TE
EPI PE

*

PC1 score

P
C

2 
sc

or
e

B

20100-10-20

-10

0

10

20

TE

EPI

PE

Bmp4
Fgf4

Klf2

Nanog

Pou5f1

Sox2

Gata4
Gata6 Pdgfra

Runx1

Dppa1

Fgfr2

Id2
Krt8

Creb3l2

Tspan8

Dab2

PC1 loading

P
C

2 
lo

ad
in

g

C 0.4

0.2

0.0

-0.2

-0.2-0.3 -0.1 0.0 0.1 0.2 0.3 0.4

Figure 1. Three Molecularly Defined Populations at the !64-Cell Stage
(A) A heat map of expression levels for 48 genes (see also Figure S1 and Table S2 for how these were selected) from 159 individual cells collected from !64-cell

stage blastocyst. Cells are defined as trophectoderm (TE), epiblast (EPI), and primitive endoderm (PE) based on their expression of known markers Cdx2, Nanog,

and Gata4, respectively. The asterisk (*) marks five transitional cells with PE and EPI expression characteristics.

(B) Principal component (PC) projections of the 159!64-cell stage cells colored according to their embryo of origin. Encircled by a dashed line are the same five

cells marked by an asterisk in (A).

(C) PC projections of the 48 genes, showing the contribution of each gene to the first two PCs. The first PC can be interpreted as discriminating between TE and

ICM; the second between PE and EPI. The position of endogenous control genes Actb (blue) and Gapdh (red) are shown.

Developmental Cell

Single-Cell Expression from Zygote to Blastocyst

Developmental Cell 18, 675–685, April 20, 2010 ª2010 Elsevier Inc. 677

cells

tra
ns

cr
ip

ts

genes

ce
lls

cell c
ycl

e genes

§ scLVM also enables learning 
multiple latent factors

TH2 diff. 
marke

rs

§ Th2 differentiation marker genes

N(0, )
−3 0 3

Value

Color Key

G1 phase
S−phase
G2M phase

N(0, )

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

	�
��
��
��
�


 
�� �
����


�
��
��

N(0, )

� � � � � � � � 	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 �� �� �� �� �� �� �� �� �	 �
 ��

���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

�	��
����
����
����
���

	�
��
��
��
�


 
�� �
����


�
��
��

cell cycle

technical noise

res. biological variability

N(0, )
−3 0 3

Value

Color Key

G1 phase
S−phase
G2M phase

th2 differentiation

§ Extended variance component analysis



§ Th2 differentiation 
928 genes with affected by 
the Th2 differentiation 
factor

Can we better tease apart the effect of cell 
cycle and differentiation ? 



§ Th2 differentiation 
928 genes with affected by 
the Th2 differentiation 
factor

§ Th2/cell-cycle interaction 
200 genes with interaction 
effects 

§ Enriched for  
positive cell proliferation   
negative regulation of 
apoptosis

Can we better tease apart the effect of cell 
cycle and differentiation ? 



§ Th2 differentiation 
928 genes with affected by 
the Th2 differentiation 
factor

§ Th2/cell-cycle interaction 
200 genes with interaction 
effects 

§ Enriched for  
positive cell proliferation   
negative regulation of 
apoptosis

Can we better tease apart the effect of cell 
cycle and differentiation ? 



§ Random effect covariance models can be flexibly applied 
to account for different levels of sample heterogeneity  

§ (e)QTL analysis 
• population structure & env. /technical confounding to 

improve power and accuracy 

§ Single-cell RNA-seq analysis 
§ a small number of genes with known cell cycle annotation 

is sufficient to estimate a cell covariance due to cell cycle 
• more compact gene-gene correlations 
• detection of genes with interactions involving multiple 

biological processes

Closing comments
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Tutorial pointers

§ R version of scLVM, recommended for R users:
https://github.com/PMBio/scLVM/tree/master/R/tutorials

§ scLVM python module & ipython notebooks with an 
example that interfaces to GPy.

> git clone git@github.com:PMBio/scLVM.git
> cd scLVM/tutorials
> ipython notebook ./tcell_demo.ipynb

https://github.com/PMBio/scLVM/blob/master/tutorials/tcell_demo.ipynb

§ GPy example on non-linear dimensionality reduction 
applied to single-cell RNA-Seq
https://github.com/SheffieldML/notebook/blob/master/compbio/SingleCellDataWithGPyTutorial.ipynb

§ Practical to use LIMIX for genetic analyses:
https://github.com/PMBio/limix-tutorials


