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Outline

Introduction
* Small history of high throughput data
* how did the data grow and what are we facing?

Complexity of high throughput data analysis: pro and cons

Application of high throughput data analysis

e Clinical study (past —present)
* Stem cell application (present —future)

Future directions



Past — HGP

Each gene to be probed
one at a time. Biological
systems were investigated
by examining their parts in
isolation. System-level
analysis only theoretically
possible

Present —Future
“omics” analysis at single-cell resolution
enabling understanding of complex
biological phenomena. Characterise cellular

cellular composition of complex tissues, find
new microbial species and perform genome-

wide haplotyping.
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Human Genome Project

HiSeq 2500

HGP - present

Ability to probe and
quantify activity of every
gene, how it respondsto -
a particular
perturbation. high—
throughput profiling
studies enabling
systems—level analyses,
with integrative
approaches to elucidate
the functional
associations between
differentially expressed
genes.
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Our Motivation

Personalised Medicine: a medical model that proposes the customisation of
healthcare - with medical decisions, practices, and/or products being tailored

to the individual patient.
Wikipedia

My aims ...

 Combine gene—level analyses with pathway—based methods to generate a
comprehensive profile of the functional modules that govern biological

processes.

* We want to use high—throughput data to build predictive models at the
systems level and define therapeutic intervention and /or genomic
predispositions to disease at individual level.
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Adapted from Braun R, Adv Exp Med Biol. 2014; 844: 153-187
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Genomic Data: a new challenging era

In February 2001 scientists published the first drafts of the Human Genome, the
dawn of the genomic era. The Human Genome Project was completed in 2003.

Challenges in “omics” do not derive only from the informatics that is required to
analyse, summarised the vast amount of raw (sequencing and not) data that is
available, but primarly from intepreting the findings in complex systems.

Moore's law: The number of transistors that can be
Sequencing Progress vs Compute and Storage placed inexpensively on an integrated circuit doubles

Moore’s and Kryder’s Laws fall far behind .
approximately every two years

Sequencing (kbases/day)

100000000 - —— Microprocessor (MIPS)
Compact HDD storage capacity (MB)
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= Value and definition of raw data?
How can we analyse this data effectively?
How do we interpret this data?
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Quality of the data is important

DNA modification

RNA expression
Deep profiling

JNA methylation
Histon Modification

NncRNA and smRNA
expression

The accuracy of systems—level analysis will depend on the quality of the data being

analysed. Clear experimental design, appropriate assay technology employed, and the
preprocessing of the raw data.
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Tools we need

Optimal Experimental Design — minimise the noise in the measurement
Mathematical Models — define rules (functions) to describe processes
Statistical tools — quantify accuracy in prediction and sensitivity in estimation
Computational Skills — handling large amount of data in automated way

Visualisation tools — identify patterns in the data
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The study

It was funded by the Cardiovascular Biomedical Research Unit (CV BRU) led by
Prof D. Crossman under a scheme promoted by the UK Government health
research strategy: Best Research for Best Health.
CV BRU was an Infrastructure Funding and the aim to:
* Drive innovation in the prevention, diagnosis and treatment of ill-
health ( acute coronary syndrome);
* Translate advances in medical research into benefits for patients;

Genomics of Acute Coronary Syndrome:
» Explore the transcriptional activity of the biological processes in ACS to predict
risk of recurrent events (Gene expression data — transcriptional effects)
» Recategorisation of the acute events (Ml) to improve prognostics
» Understanding the role of inflammation in ACS by functional manipulation of
affected pathways (role of inflammation in ACS particular focus of IL-1)
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Why we are interested in Cardiovascular disease (CVD) DF o

Deaths by cause in women, United Kingdom 2012

All other causes
18%

Dementia & Alzheimers
12%

Dwathy andar 75 by coawe by men, United Kingdom 2012

Disbetes —

1%

HF Heart Statistics -~ - L LR T S

Deaths by cause in men, United Kingdom 2012

All other causes
18%

)

ERYAS BHF Heart Statistics

Dementia & Alzhelmers
6% 1Diseases of arteries, arterioles and
capilliaries
2%

‘nbeles\
1%

Hypertensive diseases
1%

Other diseases of the circulatory
system
<0.5%

BHF Heart Statistics



Multifactorial disease: ideal for a system-level approach

The
University
Of
Sheffield.

Cardiovascular disease
(CVD) is the United
Kingdom’s biggest killer.

Each year 198,000
people die from
CVD(BHF, 2009) and
although the rate of
death in the UK has
fallen markedly over the
past two decades it
remains among the
highest in Europe.

It costs the EU more
than €192bn (£145bn)
annually, equivalent to
nearly €400 a head.
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Patients cohort and experimental design

Pilot Study: Recruited ~170 patients

Patients recruited presenting to A&E with acute cardiac chest pain with first occurrence in
the last 48 hrs.
Both STEMI and NSTEMI we recruited and control cohort is represented by patients

presenting with Unstable Angina (tropinin Negative).

ACS patients are deeply screened over time after their first acute event
Time course: Day1 Day2 Day3 Day7 Day 30 Day90 Day 365

Tests performed: Bloods, Urine, Platelet Tests, GTT, ETT, Echo
Sample stored: Serum, Plasma, DNA, RNA(PAXgene), RNA(Tempus)

MRNA quantification with Affymetrix arrays from Whole blood:
microRNA quantification with TagMan (TILDA cards) from whole blood
Full time course at Day 90: 33 Patients
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Example: genomic analysis of diseases

Dealing with a very heterogeneous genetic background:
splice variants and de novo splice junctions
functional SNPs
different predisposition to disease, due to a different factors

Difference font of variations, not always linear and not always possible to
model globally.

Missing data points is a HUGE problem.

Adding complexity to the model: increase of computational time and
compromising tractability of the models

Often not big enough sample size, in common diseases need large
collections. No replicated experiments.

Collection of samples over long period: high technical variation.
Difficult to evaluate variation, complex data handling and storage



Whole blood for Transcriptomics

Down:

*Many cell types: erythrocytes,
leukocytes, thrombocytes,
Circulating microvesicles, apoptotic
bodies, circulating cells
*Hemoglobin and its mMRNA
*Sensitive to donor conditions
*Specificity

Up:

*Easy accessible tissue

*Dynamic interaction with the whole
body

*RNA, microRNA and DNA from the
same sample

*Stored in biorepositories
*Complex but richer information
*Possible diagnostic tool

N

Environmental effects and confounding

factors influencing gene expression

O T

‘m o
[ |

5t =

10f

15

20

0 5 10 15 20

The
University

Sheffield.

0.8
0.6
10.4
10.2
10.0

—0.2

-0.4

—0.6

Probabilistic ANAlysis of genoMic datA (PANAMA) — Fusi et al.
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Choosing the correct methods

Transcriptome analysis

Robust gene expression estimates depend on how well we are able to quantify the
uncertainty.

Down stream analysis will be more effective and number of false positives will be
reduced.

Good measure of uncertainty helps to denoise the data
and consequently gives confidence in the results
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Liu X et al, Bioinformatics 2005 : o MM signal :
Pearson R et al, BMC Bioinformatics, 2009 \'00¢ Set & J ©

Mgie ~ Ga(age + dorge, bg)

specific MM binding and multiple information across chips



Posterior density

Posterior density

Combining replicates

ACS profiles

Combined profiles

The model
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Observed variance:
og = \/ ﬁ > (E[log(sgjc)] — (E[log(sgjc)]))?

Predicted variance:
1
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Filtering:
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J. Nielsen et al, in preparation
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Differential Expression: pumaDE and PPLR

——
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Probability of Positive Log ratio: PPLR

Plus > p2lD. ) = [ P(us = palD. 6)d(

PPLR and False Discovery Rate

FDR(1..n)

ZI—PPLR

J. Nielsen et al, in preparation
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The results

Robust quantification of
expression levels - puma

Correction for environmental
effects and confounding factors

Effective filtering of the data

Down stream analysis of
robust targets

Target Validation and
Specificity
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We selected 93 genes across the 5 time
points that were significantly differentially
expressed.

The top 44 (plus 3 CTRLs) were technically
validated using TLDA cards ( 70.5% were
validated)

Biological Processes W positive regulation of protein binding

& heme biosynthetic process
“ heme metabolic process

4.9 4.9 “immune effector process
49 49 P

4.9 W innate immune response
pigment biosynthetic process

i porphyrin biosynthetic process
& porphyrin metabolic process

positive regulation of smooth muscle cell

proliferation
i regulation of protein binding
W regulation of Ras protein signal transduction

regulation of response to external stimulus

regulation of small GTPase mediated signal
87.8% of final list transduction )
tetrapyrrole biosynthetic process

tetrapyrrole metabolic process
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Molecular Functions Cellular Components
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i cytoskeletal protein 4.9
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' W brush border

51.1% of final list nucleoside-triphosphatase 36.6% of final list
regulator activity :

enzyme activator activity

W GTPase activator activity

W GTPase regulator activity
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The Results (cont.)

RQ Blood Components FC Blood Components vs WB
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Healthy volunteers a pool of 5

ACS: is it all about plateles?
We identify pathways connected to inflammatory responses that can be regulated or
dysregulated even after full recovery. Are platelets involved in modulating inflammation?
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Stem Cell therapy using hPluripotent Stem Cells

Stem cell therapy is the use in living individuals of specifically derived stem
cells to treat or prevent a disease .

* hPSCs in culture acquire mutation in their genome. Using Inhibitors in culture
medium and specific culture protocols, can improve the proliferation of cell carrying
CNVs.

* Useful model to investigate methods of suppressing the selective advantage of
variants. Mechanisms of selective advantage are not yet known.

* Inclinical grade line it is required ABSENCE of CNVs for cell therapy. This is very
difficult to obtain. Limitations in advances in the field.

1. How do we predict occurrence of variants so to minimise
them?

2. How can we identify functional significant genetic and
epigenetic variants during hPSCs production for efficient
translational use at individual bases?



Selective advantage of variants drives culture adaptation

Mutation

genetically normal population spontaneous mutations or
of stem cells duplication of chromosomes
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Selection
gene duplication provides
selective advantage to variant cells overtake
variant cells the entire culture

Biological / manufacturing consequences:
e abnormal growth characteristics

* compromised differentiation potential

* no longer representative for screening

Clinical consequences:

* poor therapeutic products

* genetic disease

» danger of cancer following transplantation
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so to minimise them? W L

Estimating mutation rate in different culture condition using whole genome sequencing

Experiment performed in a

C)e) variety of growth conditions

9559

() oo
2P Clone
Expand
Clone ~90 doublings
©

Whole Genome
and Bisulphite for
20 Clones

MShef4 (relatively unstable) MShef11 (stable) In collaboration

with the Sanger



. How can we identify functional significant
genetic and epigenetic variants during

hPSCs production for efficient

translational use at individual bases?
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Define areas of “hot spot” in the genome by studying stem cell lines from different
population — ISCI project. Use the information as a prior to rank the impact of CNVs
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lllumina SNP Bead Chip Arrays: the analysis & guaa

Across the whole genome we aim to identify genomic alterations:
Identify loss-of-heterozygosity (LOH)

Identify Copy Number Variation (CNV)

Identify hot spot with statistical significance over noise
Identify new loci where CNVs can occur in small amplicons

SNP arrays contains over 2.3 millions markers of most common and rare SNPs from the 1kGP
(MAF>2.5%) for diverse world populations.

B Allele Freq

Log R Ratio

20




ES cell lines screening with Illlumina Arrays

Cell Line Platform | Cell Bank Abnormalities Notes

Mshepy | lumina H“']“l""c""’SNP "| mShe2PreMCB | None significant Noisy BAF in: Cht9, Chr20, Chrl7
Mshepy | umina H“'l“:““c“"SNP' mShef3 PreMCB | None significant Noisy BAF in: Chr9, Chrl7, Chr20, ChrX
Mshef4 Nouiss Hurlnzan(?yloSNP- mShefd PreMCB None significant Noisy BAF in: Chr9, Chrl7, Chr20, ChrX
MShefs Hwmina HHT?"C'VIOSNP' mShef5 PreMCB None significant Noisy BAF in: Chr9, Chr20, ChrX

Shef6 [llumina HurlnzanCymSNP- UKSCB material None significant (I:;lt:l)s(w BAF in: Chl, Ch9, Chrl1, Ch17, Chr20,

Mhery | lumina ”“'l“,““c«"“’SN"‘ mShef7 PreMCB | None significant Noisy BAF in: Chr9, Chrl7.Chr20,ChrX
MShefs [llumina Hu;llian(?yloSNP- mShef8 PreMCB Noae signiicant Noisy BAF in: Chr6, (é ::‘;(C hr16, Chrl7 ,Chr20,
Mshefto | "1omind HUICYOSNE- | mher1o ProMCB | None sigificant | Noisy BAF in: Chi, Ch, Chr, Chi), ChrX
Msheft | 1umind ”“'l","“c""’SNP “| mShefll PreMCB | Nonesignificant | Noisy BAF in: Chr6, chr9, Chrl, Chr20,CheX
Mshertz | lumind ”“'l“:““c«"“’SNP‘ mShefl2 PreMCB | None significant Noisy BAF in: Chr9, Chrl9, Chr20, ChrX
MShef13 Tlowics HuT;nCmSNP. mShef13 PreMCB None significant C::;lsgh?‘;\ghl:l.,cgﬁizg lcl,r:rx
MShef14 Tl HUT;’!"CWSNP' mShef14 PreMCB None significant Noisy BAF in: Chrl, Chr9, Chr17, Chr20, ChrX
MShefd [llumina Hur;mnOminlS- mShefd gl(' I clone Nooe sgnifican Clone Bl

MShefd [llumina Hur:anOminl.S- mShef4 [(;)f I clone None significant Clone B4

MShefd [llumina Hur:anOminl.S- mShefd gs(' I clone None significant Clone BS

MShefd [llumina Hu:mnOminl.S- mShef4 é}xCI clone Noae significant Clone B8

MShefd [llumina Hur;lanOminlS- mShefd [(3)9(' I clone Nous sguificet Clone B9

[llumina HumanOmin2.5-8 BeadChips:

BAF

LRR

0.4 08

00

MShef4 cell line

w'nw_. T T T P

i

| S

N -
T T T
0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07
s T T T T T T
0e+00 1e+07 2e+07 3e+07 4e+07 Se+07 6e+07
Chr20
SNPs analysis:

* Correlation of BAF and LRR for each line and
each chromosome

* No CNVs and LOH were identified

*  “Noisy” loci were identified across all lines

>2.3 millions markers of most common and rare SNPs from the 1kGP (MAF>2.5%) for diverse world

populations



Studying the impact of biophysical force in culture and in 3D culture at
system-level for each cell.

* integrated data approach

* predictive models of selection in specific condition

* single cell approach

S6 3- S6 3+ S14 3-

CD9
DNMT3B
GABRB3
GBX2
GDF3
NANOG
POUSF1
SOX2
TDGF1
ZFP42
FGF5
LEFTY1
LEFTY2
NODAL
CDX2
EOMES
GATAM
GATAB
SOX1 7

MYOD1

NEUROD1

VVVVVV'VYVVVVVVV"VV...... VVVV'VYV..I.......O.. \AAAAAAAAAAAAAL L LR L N BRAAAAAL LI I I L LTS ]])

® Xl -
v Xl Single cells

@Yl
Vil

-2.15 15.46
High expression Low expression
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Pluripotentcy

Gastrulation

Trophectoderm
Endoderm
Mesoderm

Neural

Improve the efficacy of stem cell therapy, studying the impact of silent mutation in

transplanted line.
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Summary

Modern biology studies fine details on large scale and has generated challenges that
we can only approach by integrating disciplines in a system-level approach

With large data and assays in high throughput fashion we need to quantify
uncertainty to be able to estimate the proportion of false discovery we have in our

selections. Impact of Machine Learning in analysing and using this data is huge

Import to model the uncertainty when signal is very close to noise, i.e. single cell data.
Successful use of Machine Learning methods need to be supported by appropriate

experimental designs.

The road to Personalise Medicine is now clear:

Computational Models -->Bench -->Computational Model --> bedside
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