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Introduction

Part I: Sequencing Basics
o The Rise of the Sequencers
o From Genome sequencing to Counting assays
o Biological question, sequencing, analysis
Part 1l: RNA-seq Basics
o Read Mapping and common analysis steps
o Gene and transcript quantification, Caveats
Part Ill: Chip-Seq Basics
o Enhancers, Promoters
o ChIP, DNase, ATAC, & friends
Part IV: Integration Approaches
o From DNA to Phenotype
o Integration into QTLs
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Quantitation in Biology

» Biology has a rich tradition of quantitative analysis
— Biostatistics for ecology and genetics
— Biochemistry & X-ray crystallography

+ But the rise of molecular biology in the 1970s and
1980s led to a more qualitative approach:
— "l see a band on this gel at the right location”
— “We have cloned gene X, which is related to gene Z.”
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The Central Dogma and
Transcriptional Regulation

» Transcription is tightly
regulated as part of
development
— Also easier to measure than

protein levels

 Critical questions:

— Which genes are turned on
and off in a given cell at a
Transcription given time?

— What is the expression level
DNA of these genes?

— How is this all encoded in the
DNA?
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Generalizing by Going Genome-wide

* The cloning of individual genes during the
last quarter of the 20th century revealed
tantalizing hints to the structure of
eukaryotic genes.

Gene
| H = I
Long-rangs regulatory elements cis-requlatory slements /7, e

(enhancers, repressors/ silencers, insulators) (promoters, transeription .\_7__{ E :
factor binding sites| ranscrip

» But a comprehensive picture of gene regulation
needs to include the entire gene collection for a
given organism as well as its intergenic regions,
collectively called “genome”.
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Sequencing Genomes

+ Manual sequencing using gels was quickly
automated by the mid-1980s.
— Applied Biosystems
— Capillary sequencing
— 150-200 bp at first, paired 600-700 bp now
» A concerted effort from the NIH to sequence
genomes of model organisms:
— E coli (bacteria) 4.5 Mb (1997)
— S cerevisiae (yeast) 6.0 Mb (1997)
— C elegans (nematode worm) 98 Mb (1998)

— Human 3 Gb (2000)
» Estimated cost: $2.7 billion in 1991 dollars
» Estimated time in 1990: 15 years
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The Encyclopedia of DNA Elements

+ Once the genome was sequenced, the next
question became how to make sense of it.
— Which nucleotides are functional ?
— What is their function

+ The National Human Genome Research
Institute (NHGRI) started the (mod)ENCODE
projects to annotate the human and model
organism genomes:

— 2004: Human 1%

— 2007: Human whole-genome

— 2008: Drosophila and C. elegans
— 2010: Mouse
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Originally, microarrays were used to
read out genome-wide functional assays
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ENCODE Project Consortium (2004). Science 306: 636.
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An Investment: the $1000 human genome

* The situation by the turn of the century:
— Cost of a human-size draft genome (8x) in 2003: $50M

— 4 main publicly supported genome centers in the US received the
bulk of the money set aside for sequencing:

= MIT (Broad)
« Washington University
+ Baylor
+ DOE
* In 2003, NHGRI committed to develop next-generation
sequencing technologies to lower the cost of 30x a human
genome (~100 Gbp):
— $100,000 genome
— $1,000 genome

+ Originally targeted for de novo sequencing, and
resequencing for population genetics.
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A variety of current technologies are
available with different tradeoffs

short many
A applied
AB biosystems- SoLID (2007)

| UIMINa  Genome Analyzer (2007)

454 Sequencing (2005)

SMRT (2010)
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Exponential growth of lllumina mapped
sequence / lane throughput
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[~ Gbp/lane| 0.025 | 0128 | 15 10 | 30-50 | =75

Read type: 1x25 1x36 2x75 2x100 2x150 2x150
Cost/lane is relatively stable at $600 to $1,200
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Genomics: a maturing field
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Counting assays
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For all sequence-counting assays, the more reads, the better
About half of the worldwide current generation of
sequencing capacity is dedicated to these assays.
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Biological Question, Sequencing & Analysis

o New genome qualitative
o Sequence DNA = assemble
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Biological Question, Sequencing & Analysis

o New genome qualitative
o Sequence DNA = assemble
o Genomic variation qualitative

o Sequence DNA = assemble = align = detect
o Sequence = align to DNA = detect
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Biological Question, Sequencing & Analysis

o New genome qualitative
o Sequence DNA = assemble
o Genomic variation qualitative

o Sequence DNA = assemble = align = detect
o Sequence = align to DNA = detect
o New gene/transcript qualitative
o Sequence RNA = assemble
o Sequence RNA = align to DNA = detect
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Biological Question, Sequencing & Analysis

o New genome qualitative
o Sequence DNA = assemble
o Genomic variation qualitative

o Sequence DNA = assemble = align = detect
o Sequence = align to DNA = detect

o New gene/transcript qualitative
o Sequence RNA = assemble
o Sequence RNA = align to DNA = detect

o Gene/transcript expression quantitative

o Sequence RNA = align to known RNAs = count
o Sequence RNA =- align to DNA = count
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Biological Question, Sequencing & Analysis

o New genome qualitative
o Sequence DNA = assemble
o Genomic variation qualitative

o Sequence DNA = assemble = align = detect
o Sequence = align to DNA = detect

o New gene/transcript qualitative
o Sequence RNA = assemble
o Sequence RNA = align to DNA = detect

o Gene/transcript expression quantitative

o Sequence RNA = align to known RNAs = count
o Sequence RNA =- align to DNA = count

o DNA/RNA-Protein binding quantitative
o Binding assay = Sequence = align to DNA = identify peaks
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Biological Question, Sequencing & Analysis

o New genome qualitative
o Sequence DNA = assemble
o Genomic variation qualitative

o Sequence DNA = assemble = align = detect
o Sequence = align to DNA = detect

o New gene/transcript qualitative
o Sequence RNA = assemble
o Sequence RNA = align to DNA = detect
o Gene/transcript expression quantitative
o Sequence RNA = align to known RNAs = count
o Sequence RNA =- align to DNA = count
o DNA/RNA-Protein binding quantitative
o Binding assay = Sequence = align to DNA = identify peaks
o Methylation quant- & qualitative
o Bisulfit treatment = Sequence DNA = align to DNA=- count
° ...
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RNA-seq

A digital counting method for
transcriptome discovery and quantification
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l Fragment, reverse transcribe

l Sequence, map onto genome
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(relative, absolute, non-molar, and others)

3x 2X 1X
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ChIP-seq

A digital counting method to score site occupancy
by DNA binding proteins

crosslink proteins to DNA

shear by sonication

immunoenrich control (no antibody)
reverse crosslink reverse crosslink
. optional amplification optional amplification
Bl_lti;a Y . size select size select 2 Days
L prep for sequencing prep for*sequencing
sequence sequence 2 Days
map to genome map to genome 1 Day
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RNA-seq: Transcripts and Library Preparation

There are many different kinds of RNAs:
o Protein-coding mRNAs
o Noncoding RNAs

Structural RNAs (e.g. rRNAs, tRNAs, .. .)
Small RNAs (e.g. miRNAs, endogenous siRNAs, .. .)
Antisense / promoter-associated transcripts

© 0 o o

Analysis of biological sample starts with sample/library preparation.

Depending on which RNAs should be targeted, different preparation
strategies have to be used.
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.
Sample/Library Preparation Choices

Directly sequencing total-RNA is suboptimal in most cases:
o rRNA, tRNAs constitute the largest fraction of RNA (> 90%)

Sample preparation choices:
o ribo-minus (rRNA depletion, if it works)
o oligo-dT (selection of poly-adenylated transcripts),

o exonuclease treatment (degrade 5'-P RNAs)

Library preparation options (depend on sequencing technology)
o Strand information

o paired end, mate-pair sequencing

Most of these steps distort RNA transcript concentrations.
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Read Analysis |

o Assembly
= generate contigs
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ACGTACCGTTTGACTCTAGTATCTTCTAGTAGATATT T AGATAAAA
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Read Analysis |

o Assembly
= generate contigs

o Mapping/Alignments
= map/align reads back to a known genome

.. .GCAAACCAGTGACCTGACTACTACGTCGTAACGTACACGGTAGCT. ..
GCAAACCAGTGACCTGACTACTACGTCGTAACGTAC
CAAACCAGTGACCTGACTACTACGTCGTAACGTACA
AAACCAGTGACCTGACTACTACGTCGTAACGTACAC
AACCAGTGACCTGACTACTACGTCGTAACGTACACG
ACCAGTGACCTGACTACTACGTCGTAACGTACACG
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Read Analysis |
o Assembly
= generate contigs

o Mapping/Alignments
= map/align reads back to a known genome

o Quantification
= Estimate abundances of transcripts/binding . ..

Problem: hundreds of millions of reads of short length

= Big computational challenge
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Read Analysis - Mapping

Read mapping problem

For each read find its target regions on the reference genome such
that are at most k mismatches between read and target.

©

Global/local alignment of all reads prohibitive
A read stems from a certain small region
o Find this region and then do an alignment

©

o (Spaced) seeds o Suffix trees/arrays o Burrows-Wheeler

o Common tools: bowtie [Langmead et al., 2009], BWa [Li and Durbin, 2009, 2010],
GenomeMapper [Schneeberger et al., 2009a], Shrlmp [Rumble et al., 2009],
SOAP(2) i et i, 2000, VMATCH, MAQ [1i et a1, 2008, ELAND,

segemehl [Hoffmann et al., 2009], . . . (=50 more)
o Main issues:
o Accuracy o Speed o Memory Consumption
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Example: Mapping via Spaced Seeds

o Blast-like searches suffer from two problems:
o longer seeds lose distant homologies
o shorter seeds create too many hits
o Idea: Create seeds that have a higher probability of a hit in a
homologous region while lower expectation of random hits
= Spaced seeds

. GCAAACCAGTGACCTGACTACTACGTCGTAACGTACACGGTAGCT. ..

TGACTACT
11111111
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B
Example: Mapping via Spaced Seeds

o Blast-like searches suffer from two problems:
o longer seeds lose distant homologies
o shorter seeds create too many hits
o Idea: Create seeds that have a higher probability of a hit in a
homologous region while lower expectation of random hits
= Spaced seeds

. GCAAACCAGTGACCTGACTACTACGTCGTAACGTACACGGTAGCT. ..
GCAAACCAGTGACCI%Q%{?&'{ACGTCGTAACGTAC

(© Gunnar Ritsch (cBio@MSKCC) Introduction to Sequencing & Functional Genomics @ Weill Cornell Graduate School 21


http://cbio.mskcc.org
http://www.mskcc.org

o Memorial Sloan-Kettering Cancer Center

Example: Mapping via Spaced Seeds

o Blast-like searches suffer from two problems:
o longer seeds lose distant homologies
o shorter seeds create too many hits
o Idea: Create seeds that have a higher probability of a hit in a
homologous region while lower expectation of random hits
= Spaced seeds

. GCAAACCAGTGACCTGACTACTACGTCGTAACGTACACGGTAGCT. . .

GCAAACC TGACTACT TAACGTAC
100001001101000100000011
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Example: Mapping via Spaced Seeds

o Blast-like searches suffer from two problems:
o longer seeds lose distant homologies
o shorter seeds create too many hits
o Idea: Create seeds that have a higher probability of a hit in a
homologous region while lower expectation of random hits
= Spaced seeds

. .GCAAACCAGTGACCTGACTACTACGTCGTAACGTACACGGTAGCT. ..
GCAAACCAGTGACCTGACTACTACGTCGTAACGTAC
100001001101000100000011
011110000010010101000000
110000110000000001111000
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o
Tools for Spliced Read Alignments

Traditional ones developed for cDNA sequence alignment:
@ blast [akschul et al., 1900], Spliced alignments [Gelfand et al., 1996], SIM4
[Florea et a1, 1998], GeneSeqer [Usuka et al., 2000, Spidey [wheelan sJ, 2001], blat
[Kent, 2002], €Xalin [Zhang and Gish, 2006], Palma [schulze et al., 2007]
= Too slow for RNA-seq read alignment
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o
Tools for Spliced Read Alignments

Traditional ones developed for cDNA sequence alignment:
@ blast [akschul et al., 1900], Spliced alignments [Gelfand et al., 1996], SIM4
[Florea et a1, 1998], GeneSeqer [Usuka et al., 2000, Spidey [wheelan sJ, 2001], blat
[Kent, 2002], €Xalin [Zhang and Gish, 2006], Palma [schulze et al., 2007]
=-Too slow for RNA-seq read alignmentVariety of new tools

specific for spliced NGS read alignment:

o Erange [Mortazavi et al, 2008], GEM [Ribeca], MapNext [Bao et al., 2009],
MapSplice [prins, PALMapper [ritsch et al., 2010]
(=GenomeMapper/QPALMA [schneeberger et al., 20095, De Bona et al., 2008]),
PASS [Campagna et al, 2009], Star (pobin), TOpHat [Trapnel et al., 2009], . . .
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o
Tools for Spliced Read Alignments

Traditional ones developed for cDNA sequence alignment:
@ blast [akschul et al., 1900], Spliced alignments [Gelfand et al., 1996], SIM4
[Florea et a1, 1998], GeneSeqer [Usuka et al., 2000, Spidey [wheelan sJ, 2001], blat
[Kent, 2002], €Xalin [Zhang and Gish, 2006], Palma [schulze et al., 2007]
=-Too slow for RNA-seq read alignmentVariety of new tools

specific for spliced NGS read alignment:

o Erange [Mortazavi et al, 2008], GEM [Ribeca], MapNext [Bao et al., 2009],
MapSplice [prins, PALMapper [ritsch et al., 2010]
(=GenomeMapper/QPALMA [schneeberger et al., 20095, De Bona et al., 2008]),
PASS [Campagna et al, 2009], Star (pobin), TOpHat [Trapnel et al., 2009], . . .

o lIssues:

o Assumptions on splice consensus

o Accuracy of intron predictions

o Speed (often higher than for unspliced alignments)
o Memory consumption (similar to unspliced mappers)
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Common RNA-Seq Analysis Steps

RNA-Seq
Reads

\4

Read Alignment
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Common RNA-Seq Analysis Steps

\4

TARs and

Read Alignment Transcripts

Expression level
~ #reads

Significance
Testing

Transcript
Quantitation

Differentially
Processed Transcripts/
Segments
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Common RNA-Seq Analysis Steps

RNA-Seq De novo
Reads Assembly

==

, .|  Transcript TARs and
Read Alignment ~ | Reconstruction Transcripts
-

Transcript

Significance
Testing

Expression level

~ #reads Quantitation

Differentially
Processed Transcripts/
Segments
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Estimate Gene Expression

Idea: Use the number of reads mapping to a gene as estimate for

the gene expression.
Problem: Read number scales with total number of reads and

transcript length
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Estimate Gene Expression

Idea: Use the number of reads mapping to a gene as estimate for

the gene expression.
Problem: Read number scales with total number of reads and

transcript length

Approach: Normalize read count, by
o Length of the transcript (sum of exonic regions in kilobases)

o Total number of reads (in million)

= Reads per kilobase per million mapped reads (RPKM)
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Estimate Gene Expression

Idea: Use the number of reads mapping to a gene as estimate for

the gene expression.
Problem: Read number scales with total number of reads and

transcript length

Approach: Normalize read count, by
o Length of the transcript (sum of exonic regions in kilobases)

o Total number of reads (in million)
= Reads per kilobase per million mapped reads (RPKM)

Alternative quantity for paired end sequencing (2 reads/fragment):

= Fragments per kilobase per million mapped reads (FPKM)
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Estimate Gene Expression: Caveats

o RPKM/FPKM values are strongly dependent on the expression
level of the highest expressed genes (largest fraction of reads,
e.g. rRNA contamination)
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Estimate Gene Expression: Caveats

o RPKM/FPKM values are strongly dependent on the expression
level of the highest expressed genes (largest fraction of reads,
e.g. rRNA contamination)

o Effect of genomic variation
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Estimate Gene Expression: Caveats

o RPKM/FPKM values are strongly dependent on the expression
level of the highest expressed genes (largest fraction of reads,

e.g. rRNA contamination)

o Effect of genomic variation

PALMapper
wio variants
‘mismatches
Palmapper 1 mismatch
Insertion w/ variants mismatches
—
Tophat ————
DNA \ p

SNV A\
g 5% 3% 1%  +1% _ +3%
Read alignment Deletion -6% -4% -2% o
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o Memorial Sloan-Kettering Cancer Center

Estimate Gene Expression: Caveats

o RPKM/FPKM values are strongly dependent on the expression
level of the highest expressed genes (largest fraction of reads,
e.g. rRNA contamination)

o Effect of genomic variation

o Alternative transcripts/RNA-processing may lead to differential

read counts
90%

10%
Vs

10%

!i!i

90%
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Quantitation of Transcripts

AT1G01630
Chromosome CHR1 +

228971 229372 229773 230174 230575

Read count

0

10

I I I . I 1 |
229 2292 2294 2206 2208 23 2.302 2304 2306 2308

5
x 10
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_ Memorial Sloan-Kettering Cancer Center
Quantitation of Transcripts

AT1G01630
Chromosome CHR1 +

228971 229372 229773 230174 230575

10

Read count

10°

1 | | L

L 1 L L
2.29 2.292 2294 2.296 2.298 23 2.302 2.304 2.306 2.308

5
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_ Memorial Sloan-Kettering Cancer Center
Quantitation of Transcripts

Given short reads alignments and a set of known transcripts, can we
disentangle transcript abundances?
Solve an optimization problem:

o Optimizing weights w; for each transcript t =1,..., T

o Exploiting additive nature of the read coverage

o Minimizing residual error (e.g., squared error)

(Wi, ...,wr) = argmlnz R, —ZWtDtp ,

wi,.. 7W-,—>0
with
o P: set of considered genomic positions
o R,: observed read coverage (number of reads covering pos. p)

o D, p: expected read coverage for transcript t at position p
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_ Memorial Sloan-Kettering Cancer Center
Quantitation of Transcripts

Different approaches rely on similar basic ideas with different models
of how to use read count differences and optimization techniques:
o Poisson distributions [Jiang and Wong, 2009]
o Absolute differences using a flow-network [Sammeth, 2009]
o Squared differences using quadratic programming  [Bohnert et al., 2009]
o (approximate) Negative Binomial distribution [Behr et al., 2013]

Other methods: [Lietal, 2010], [Richard et al., 2010], [Trapnell et al., 2010]
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_ Memorial Sloan-Kettering Cancer Center
Quantitation of Transcripts

Different approaches rely on similar basic ideas with different models
of how to use read count differences and optimization techniques:

o Poisson distributions [Jiang and Wong, 2009]
o Absolute differences using a flow-network [Sammeth, 2009]
o Squared differences using quadratic programming  [Bohnert et al., 2009]

o (approximate) Negative Binomial distribution [Behr et al., 2013]

Other methods: [Lietal, 2010], [Richard et al., 2010], [Trapnell et al., 2010]
Problems:

o Abundances cannot unambiguously be determined with single
end reads, better chances with paired ends [Lacroix et al., 2008]

o Solution may not be stable: a few reads more or less may
completely change abundance estimates

o Read coverage is not uniform over the transcript
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Effects of Alignents on Downstream Analysis
(Cufflinks: Human - Exon F-score)

Exon-level F-Score (humansingle=2)
T T T T T T T

0.45 — —
0.4 1
0.35 1
0.3 1
I mm <0
0.25 1 | I mm <2
@ mm<4
0.2 1 |ECmm<e
[ Imm<8

0.15

0.1

0.05

R

“ A
N S N\ @7 @7 O O
RN o 0 @ S SN
SONEN & SRS )
& ¢ & S ¢ & N

Filter: by max edit ops (0 — 8); prediction F-Score (exon level)

(© Gunnar Ritsch (cBio@MSKCC) Introduction to Sequencing & Functional Genomics @ WEeill Cornell Graduate School 29


http://cbio.mskcc.org
http://www.mskcc.org

Aggregate

and identify[*:

ChlP-seq

RNA-seq
quantification

RNA-seq
discovery

RNA-seq, ChIP-seq, and external data

splice-crossing reads

Map reads

associated ( differential ‘ novel splice
genes expression isoforms
a - | ™
— expression novel gene
motif finding P 9
levels models ]
P ’I .......
T nove!
binding sources
: ) transfrags
g
enriched density on known
regions exons de novo

contiguous reads
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Chromatin Immunoprecipitation (ChIP)

MeMe =

g
d Enhancer

MeMeMe
Ac

Histone tail modification

MeMeMe MeMeMe
c

Gene

Promoter

)
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Chromatin Immunoprecipitation (ChIP)

Me Me

MeMe =
i ﬁ-\%\

MeMeMe MeMeMe
Ac

Transcription Factors + histones + DNA = chromatin

epitope —
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Chromatin Immunoprecipitation (ChIP)

Me Me
MeMe = % % %

MeMeMe

2. Fragment the DNA using sonication or digestion to
an average fragment size of 200 (~ 1 nucleosome)

MeMeMe

1. Crosslink with formaldehyde
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Chromatin Immunoprecipitation (ChIP)

MeMe

MeMeMe
Ac

tibod
anti %

3. Use antibody specific to a factor to retrieve DNA
fragments that are (not necessarily directly) bound.

4. Reverse crosslinks and sequence ends of fragments.
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ChIP-seq

A digital counting method to score site occupancy
by DNA binding proteins

crosslink proteins to DNA

shear by sonication

immunoenrich control (no antibody)
reverse crosslink reverse crosslink
. optional amplification optional amplification
Bl_lti;a Y . size select size select 2 Days
L prep for sequencing prep for*sequencing
sequence sequence 2 Days
map to genome map to genome 1 Day

\/
w'll'“ 'ﬂl" LT '[I'l . L
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Chromatin

ChlIP-seq DNase-seq ATAC-seq MNase-seq FAIRE-seq

! ! ! ! !
Fragmentation ’;,_:' % 0% /‘ o%@ ,"__.-
! ! ! ! v
Enrichment p - - -— H
| | ! ! '
Amplification X == == == ==
! ! ! ! !

w— B B B D
Ll

"’F Sonication 0% Endonuclease @ Exonuclease A Tagmentation

Size -~ PCR Phenol-chloroform
)_ ChiP selection = amplification ﬁextraction

Nature Reviews | Genetics
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ChIP-Seq identifies NRSF occupancy in NeuroD1
exon

NeuroD1

g

2

9 o i =

182367900 182368300 ‘szy 2

s - 7 T T T I
o Ty ‘.Y_\ . .LTCA CA& ACA C CC

Bui} E=1-3 -
e I R E N

Replicate 1 Chif
Replicate 1 Control
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i a (Johnson et al, 2007)
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Integrate

ion extraction

and identify

Map reads

contiguous reads
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Why do we need a control ?

+ A significant fraction of the signal is coming
from the background.

» Sources of artifacts:
— Mismapping
— Repeats

Scale 500 bases 1
chr4: 64158500 S‘I'\EEDDU‘

64158500

TEChiP L

0.0014 _

59,5463 _
T A __IL_j

Control .

PolChIP i
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5 [

Since lllumina uses

L polymerase, we are

o always sequencing from
5’ end of fragment (blue or
O purple), typically observing
one end of the fragment.
4
@)
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" JE Memorial Sloan-Kettering Cancer Center

5 [

Since lllumina uses

L polymerase, we are

o always sequencing from
5’ end of fragment (blue or
O purple), typically observing

one end of the fragment.

Static sites should
- be visible as blue to
— — —— yellow transitions
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' \ NRSFef I%ChlPSe'q

summit

40 RSFexp2
NRSFexp2

0.59 _
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b .
RefSeq Genes
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Narrow ChIP-seq peaks

Single source such as a Transcription Factor binding site

Scale 200 bases*‘{
chrt: 10193000
22301 _
Unshifted reads 0.1239 _ M
- ey
19822 _
Plus reads M
01288 _, -
TF motif :

3.9645

Reads shifted by 63 bp A_

|
AR A L.l a4 BN
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Broad ChIP-seq peaks

Some repressive chromatin histone modification marks

Scale 200 “"I |
chrz21: 331 00000‘ 33200000' 33300000 33400000 33500000‘ 33500000|
29734 _
CTCF

0.0124_| mmdaj u...WJLMM.MMJHL]M....Jh. o e e e bl o J.Ih.u.lu.lluLhmmuhhnm%milml
0.7519

H3K27me3 ‘ WL
0.0065 _  fuulub b imiu & MMMWMIM.MMW Y i ot

SYNI1 Hi—} oLiGz | IFNARZ | IFNART
SYNJ1 =} oLIG1 | IFNARZ i
Cz1orfes W IFNARZ b=
cz1orf66 [fifHiH IL10RB f{HH
c210r66 (]
C21orf62 b4

cabeoadhatllia, i _.....lk S VORI PR 0 PO A YOO | ..J..JIU.I TP

No benefit to shifting or extending - use a sliding window
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Integrate

Associated genes ]

ion extraction

motif finding ]

Map reads

contiguous reads
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Finding motifs

* Once we have regions and summits, we can
retrieve the associated DNA and run them
through a motif finder such as Meme to discover
one or more motifs.

+ Can limit ourselves to +/- 50 bp from summit

+ If there are large numbers of site, consider
stratifying, using peak height or peak total signal
for ranking, e.g:

— 1000 regions with high signal
— 1000 regions with medium signal
— 1000 regions with low signal

Rescan all regions with discovered motifs
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Introduction

Part I: Sequencing Basics
o The Rise of the Sequencers
o From Genome sequencing to Counting assays
o Biological question, sequencing, analysis
Part 1l: RNA-seq Basics
o Read Mapping and common analysis steps
o Gene and transcript quantification, Caveats
Part Ill: Chip-Seq Basics
o Enhancers, Promoters
o ChIP, DNase, ATAC, & friends
Part IV: Integration Approaches
o From DNA to Phenotype
o Integration into QTLs
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The combinatorial problem

+It is now relatively easy to generate

dozens of ChlP'Seq and/or RNA'Seq o 136185000 12 et o) 120000
for a biological sample of interest i
and to analyze them singly. 556 512 bar i
i RelSeq Genes
. . oo @l | e—
The problem is exponentially more Bl
difficult as we analyze multiple pi
i z o 5 expCTDS2 chri
datasets across multiple timepoints ~ ewcrose e
and/or cell types g
« many custom methods, few tools
Given N factors, each of which could ..cios i i
have M states, then each region of . a0-way Mﬁnﬂm.gﬁcl:(&f‘;n;%;t:* s
the genome could be in any of ' . T

M N states.
— Which are the interesting ones ?
— What are the region boundaries ?
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Analyzing multiple ChIP-seq
datasets jointly

Most integrative analyses boil down
to:

1. Determining the boundaries of
regions

2. Scoring the datasets over
these regions

3.  Using statistical or machine
learning techniques to discover
combinations of patterns
1. Supervised (e.g. on TSS)
2. Unsupervised

4. Analyzing those combinations
for functional significance
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Segmenting the genome

» Segmentation can be straightforward fixed-length segments:
— Fixed distance to TSS
— Every 1kb
+ Alternatively, the algorithms are designed to learn variable length
segmentation, often with a minimum size constraint:
— Sliding window with threshold
— Hidden Markov Models

— Segmentation based on ChIP-seq peaks and a normalized density
measurement (e.g. RPKM)

Regions

Segments

Not segmented {*"“%ﬁ

[ - }
- 3
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Joint Analysis of ChIP-seq and RNA-seq

» ChIP-seq measures the input into transcription

» RNA-seq measures the (steady-state) output of
transcription

» Can we analyze them jointly to learn the rules of
transcriptional regulation ?

FHL3
a 2ko b
B 60 s
Cuffiinks [ E P t [ areaeesi o | y
assembly E 40 e
TAF1 g =S QPR
i S R e R &
HNAPOH![ L od
" : A : ”
RetSeq[ B T Hij— 24 60 120 168
Time (h)
1\'"'1'1&
é;\" ) N
- ’Pg
,b S
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Integration in QTLs

Few approaches:

o A posteriori for “validation”

o ldentify QTLs
o Match with known functional annotations to find overlap
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o Memorial Sloan-Kettering Cancer Center

Integration in QTLs

Few approaches:
o A posteriori for “validation”
o ldentify QTLs
o Match with known functional annotations to find overlap
o A priori for “filtering”
o Filter variants down to those that have a relevant functional
annotation
o Perform QTL analysis on subset with increased power (on
subset)
o Useful for small datasets and rare variants
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" JE Memorial Sloan-Kettering Cancer Center

Integration in QTLs

Few approaches:
o A posteriori for “validation”
o ldentify QTLs
o Match with known functional annotations to find overlap
o A priori for “filtering”
o Filter variants down to those that have a relevant functional
annotation
o Perform QTL analysis on subset with increased power (on
subset)
o Useful for small datasets and rare variants
o In situ during inference
o Learn weighting of functional annotation types
o ... while performing the associations
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The slides and additional material will be available online at

http://raetschlab.org/lectures/mlpm-ngs-lecture.pdf

(© Gunnar Ritsch (cBio@MSKCC) Introduction to Sequencing & Functional Genomics @ Weill Cornell Graduate School 49


http://raetschlab.org/lectures/mlpm-ngs-lecture.pdf
http://cbio.mskcc.org
http://www.mskcc.org

lemorial Sloan-Kettering Cancer Center

News and Opportunities

the current view soon the new view

Current topics: ML for phenotyping from medical records, cancer,
large-scale genomics, decision support systems, gene regulation

(come and talk to me if you'd like to learn more and look for opportunities)
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