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Single-cell transcriptomics



Biological heterogeneity

There are multiple levels of biological heterogeneity
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Understanding heterogeneity at the single-cell level

Most transcriptomic studies have focused on examining expression
in large populations of cells!:2

Some biological processes, however, require the study of variation

in gene expression at the single-cell level34

Single-cell RNA-sequencing (scRNA-seq) quantifies gene expression
profiles of individuals cells

1. Marioni et al., Genome Res (2008) 3. Hayashi et al., Science (2007)
2. Pickrell et al. Nature, (2010) 4. Diez-Roux et al., PLoS Biol (2011)
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scRNA-seq workflow

RNA extraction and
cDNA synthesis

\ Amplification

Cell 1 Cell 2 Cell 1 Cell 2
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Gene 1l
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The power of scRNA-seq
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Stegle et al., Nature Reviews (2015)
Already this has led to identification of novel:

e Neuronal populations?
Immune cell populations?
e Sub-populations of tumour cells3

1. Zeisel et al., Science, (2015) 2. Jaitin et al., Science, (2014) 3. Patel et al., Science, (2014)
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Notation



scRNA-seq data

scRNA-seq data can be represented as

cell1 cell2 --- celln

_X1,1 X12 X17n- gene 1
X21 X22 ' X2n gene 2
Xg,1 Xg2 -+ Xqn| genegq

x; j: number of mMRNA molecules mapped to gene i in cell ;.

Catalina Vallejos MRC Biostatistics Unit - EMBL European Bioinformatics Institute 9/51



scRNA-seq data
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Statistical challenges in the analysis of scRNA-seq
data



Normalisation

Cell-specific measurements can
vary due to differences in Cell 1 Cell 2

e total cellular mMRNA content,

e sequencing depth and other

amplification biases, . 8222 % mglggulg
u
o capture efficiency. ® Gene 3 molecule
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Normalisation

scRNA-seq data is typically pre-normalised using the same
strategies as for bulk RNA-seq datasets

= to adjust the expression counts using Xj; = x;;/5; with e.g.

e Reads Per Million (RPM) §; = (3>-7_; x; ;)/1000000.

Catalina Vallejos MRC Biostatistics Unit - EMBL European Bioinformatics Institute 13/51



Normalisation

scRNA-seq data is typically pre-normalised using the same
strategies as for bulk RNA-seq datasets

= to adjust the expression counts using Xj; = x;;/5; with e.g.

e Reads Per Million (RPM) §; = (3>-7_; x; ;)/1000000.
e DESeq factors!

Xij

<HJ"1:1 Xij) v

5 = medianj—1,_ 4

1. Anders and Huber, Genome Biology (2010)
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Normalisation

Although these strategies perform well for bulk experiments, they
can lead to unstable results for scRNA-seq datasets
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Technical noise
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Brennecke et al., Nature Methods (2013)

Catalina Vallejos MRC Biostatistics Unit - EMBL European Bioinformatics Institute

15/51



Using spike-in genes to quantify technical variability

To quantify the amount of technical (non-biological) variability,
non biological spike-in genes can be used?

= e.g. the set of 92 extrinsic molecules derived by the External
RNA Controls Consortium (ERCC)?

e are present at the same level in each cell

e spike-in empirical measurements can be compared to their
known values: use as a ‘gold standard’

1. Brennecke et al, Nat Methods (2013) 2. Jiang et al, Genome Research (2011)
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Using spike-in genes to quantify technical variability

e In (a), spike-in genes are
compared between 2 cells:

a b . . .
. - high level of technical noise
ARl 8 10 . .
2w A (specially for genes with low
g . g w0
i ‘ “ Ew read count)
§ 10 § 10
1 1t 1 T 1 . . .
Pl = P = e In (b), intrinsic genes are
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Normalized read count, GL2 cail 1 Normalized read count, GL2 cell 1

compared between 2 cells:
use spikes to tease out
biological variability from
technical one

a: spike-in genes; b: plant genes

Source: Brennecke et al (2013)
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Using spike-in genes to quantify technical variability

Brennecke et al (2013) suggested
e to use spike-in genes to estimate relationship between
technical variability and read count

e to ‘plug-in’ this fit to identify true cell-to-cell variability

e In (a), technical noise fit on
spike-in genes (CV?2 versus
means read counts)

e In (b), technical noise fit

SRR T T ENREE T X superimposed on biological
e b bl genes to highlight significantly
a: spike-in genes; b: plant genes variable biological genes

Figure taken from Brennecke et al (2013)
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Using spike-in genes to quantify technical variability

This 2-step approach ignores uncertainty in technical noise fit =
development of a joint model of spike-ins and biological genes
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Quality control: removing poor quality cells

Lastly (but not least!) it is important to assess how well RNA was
captured and amplified from each cell

= e.g. some cells may contain degraded RNA (due to stress)

Some important indicators are:

e The fraction of mapped reads
e The fraction of reads mapped to the spikes

e The fraction of reads to mitochondrial genes

1. Stegle et al, Nat Reviews (2015)
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Quality control: removing poor quality cells

We might also use other experimental information (e.g.
microscopy to detect multiple cells in a well)

WARNING: Be careful about removing biologically relevant cells
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BASICS: Bayesian Analysis of Single-Cell
Sequencing data



BASICS: Bayesian Analysis of Single-Cell Sequencing data

BASICS is an integrated Bayesian hierarchical model where
o cell-specific normalising constants are treated as model parameters,
as opposed to former pre-normalisation strategies
e unexplained technical variability is calibrated using spike-in genes,
combining information from endogenous genes in a single step
e highly/lowly variable genes are identified via an intuitive approach

decomposing total variability into technical and biological components
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

BASICS is an integrated Bayesian hierarchical model where
o cell-specific normalising constants are treated as model parameters,
as opposed to former pre-normalisation strategies
e unexplained technical variability is calibrated using spike-in genes,
combining information from endogenous genes in a single step
e highly/lowly variable genes are identified via an intuitive approach

decomposing total variability into technical and biological components

Integrative method rather than former 3-stage approaches
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of spike-in genes

Cell 1
If cells are identical and there is no technical variability
(e.g. seq. depth, capture efficiency, etc):
X,"j|[1,,' ’f’\cf] Poisson(u,-)
Cell 2

* BLUE quantities denote known parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of spike-in genes

Cell 1
If cells are identical and there is no technical variability
(e.g. seq. depth, capture efficiency, etc):
X,"j|[1,,' ’f’\cf] Poisson(u,-)
Cell 2

= E(Xijlpi) = pi, Var (Xijlwi) = pi-

* BLUE quantities denote known parameters

Catalina Vallejos MRC Biostatistics Unit - EMBL European Bioinformatics Institute 24/51



BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of spike-in genes

Cell 1
Differences in scale (e.g. seq. depth, capture efficiency,
etc) can be captured by cell-specific normalising terms
id o .
X l11i, 55 % Poisson(s1)
Cell 2

* BLUE quantities denote known parameters
* RED quantities denote unknown parameters

Catalina Vallejos MRC Biostatistics Unit - EMBL European Bioinformatics Institute 25/51



BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of spike-in genes

Cell 1
Differences in scale (e.g. seq. depth, capture efficiency,
etc) can be captured by cell-specific normalising terms
id o .
X l11i, 55 % Poisson(s1)
Cell 2

=E (X,'J|/JJ,'7SJ') = sjuhVar (X,',j|p,,', Sj) = Sj[4-

* BLUE quantities denote known parameters
* RED quantities denote unknown parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of spike-in genes

Unexplained technical variability is incorporated
through random effects in a hierarchical structure Cell 1

Xi jlpisvj “ Poisson(v; ;)
vilsj, 0 % Gamma(6, (50) )
i.e. E(v]s;,0) = s;, Var(vj]s;, 0) = s76.

J

Cell 2

* BLUE quantities denote known parameters
* RED quantities denote unknown parameters
* GREEN quantities denote latent intermediate parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of spike-in genes

Unexplained technical variability is incorporated
through random effects in a hierarchical structure Cell 1

Xi jlpisvj “ Poisson(v; ;)
vilsj, 0 % Gamma(6, (50) )
i.e. E(s;, 0) = s, Var(v]s;,0) = s76.

Cell 2

= E(Xlui, 57, 0) = sjpis Var(Xlpi, s7,0) = sjpi+0 (si00)°

* BLUE quantities denote known parameters
* RED quantities denote unknown parameters
* GREEN quantities denote latent intermediate parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of biological genes

ind .
XI,_]| s Miy Vi ~ POISSOI’]( Vjli )a

vilsj, 0 i Gamma(0*, (s;0) 1),

* RED quantities denote unknown parameters
* GREEN quantities denote latent intermediate parameters

Catalina Vallejos MRC Biostatistics Unit - EMBL European Bioinformatics Institute 27/51



BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of biological genes

i
Xi jloj, pis vy, = Poisson(gjuui ),
lesj’ 0 I/I\CJ{ Gamma(H_l, (Sje)_l)v

* RED quantities denote unknown parameters
* GREEN quantities denote latent intermediate parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of biological genes

ind .
Xijlj, iy vjs pij = Poisson(ejvipi)),
vilsj, 0 e Gamma(0*, (s;0) 1), pijloi nd Gamma(d; *,6:1)

Here, the v;'s are shared with the technical model component and
the pji's are such that

E(/),-J-]é,-) =1 and Var(/),-J]d,-) = (5,'.

* RED quantities denote unknown parameters
* GREEN quantities denote latent intermediate parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

Modelling expression counts of biological genes

ind .
Xijlj, iy vjs pij = Poisson(ejvipi)),
vilsj, 0 e Gamma(0*, (s;0) 1), pijloi nd Gamma(d; *,6:1)

Here, the v;'s are shared with the technical model component and
the pji's are such that
E(/),-J-]é,-) =1 and Var(/),-J]d,-) = (5,'.
= E(Xijlui, 0i, 57, 91, 0) = ¢jSjfi
Var(Xijui, 6, 55, 67, 0) = djsipi + 0(djsii)> + 0i(0 + 1)(¢ys508:)°

* RED quantities denote unknown parameters
* GREEN quantities denote latent intermediate parameters
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BASICS: Bayesian Analysis of Single-Cell Sequencing data

—» -— —_— Xi'j
1 0
1 1
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BASICS: Identifiability

Definition (ldentifiability)

A model for X is identifiable if and only if different parameter
values lead to different probability distributions for X.

For example, if
X ~ N(a+ 6,02),

« and [ are not identifiable.

In fact, the distribution of X is unchanged if o and 3 are replaced
by a* = a — v and 5* = 3 + +, respectively (for an arbitrary 7).
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BASICS: Identifiability

Using the spike-in genes, where (i) 11, ..., [iq are known

= We can identify s;'s and 0.

Recall:

E(X,'_J'|/1,,', Sj, 9) = Sjlj, Var(X,-j\/t,-, Sj, 9) = Sjlj + 6 (Sj/t,‘)Z
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BASICS: Identifiability

Using the biological genes, where p1, ..., jig, are unknown

= We can identify §;'s
= But, we can't separately identify j;'s and ¢;'s

Recall:
E(Xij|wis0i, 57, ¢j,0) = djsjpi,

Var(Xj|pi, 61, 5j, 67, 0) = ¢jsji + 0(jsipi)* + 6i(0 + 1)($j5j)°
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BASICS: Identifiability

Using the biological genes, where p1, ..., jig, are unknown

= We can identify §;'s
= But, we can't separately identify j;'s and ¢;'s

Recall:
E(Xijlwi, 61,55, 05, 0) = ¢jsjpi,

Var(X,-j\//,,-, i, Sjs ()J 9) = qﬁij/l,i -+ 9((3’)]51'/1,;)2 + (5,(9 + 1)((;§j5j/1,’)2

Identifiability restriction: n~' Y7 | ¢; = ¢o, for some known ¢.

We use ¢y = 1.
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BASICS: Variance decomposition

After integrating out all random effects (intermediate parameters),
our model induces:

E(Xijl®),sj, i, 0,0;)) = &jsjui, and
Var(Xi |y, s, i, 0,6) = opsii +0(disim)* + 6i(0 4 1)(dj550)°
—— ——— —_——

Baseline  Technical Biological heterogeneity
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BASICS: Variance decomposition

After integrating out all random effects (intermediate parameters),
our model induces:

E(Xijl9j: sj 11, 0,0i) = #sjui, and
Var(Xijloj, 5, 1,60,8:) = O+ 0(dysi) + 010+ 1)(dy5500)°
—— ——— —_——

Baseline  Technical Biological heterogeneity

Using this variance decomposition we can
¢ Quantify the strength of technical noise (overall and per gene)

e Generate a ranking of the genes based on biological cell-to-cell
heterogeneity
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BASICS: Highly and lowly variable genes

Highly Variable Genes (HVG)

o Key drivers of cell-to-cell heterogeneity

e Potential markers of novel cell sub-populations
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BASICS: Highly and lowly variable genes

Highly Variable Genes (HVG)

o Key drivers of cell-to-cell heterogeneity

e Potential markers of novel cell sub-populations

Lowly Variable Genes (LVG)

e Related to core processes of the cell

e Can help to reduce dimensionality in downstream analysis
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BASICS: Highly and lowly variable genes

i
Enrichment of 3" . ?v:tm
genes related to - §2 ‘.‘- .
cell differentiation E: i b "
Enrichment of d m- .
genes related to — Em L 0
translation B s
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BASICS: Detecting highly variable genes

We identify HVG using tail posterior probabilities associated to a HIGH
biological cell-to-cell heterogeneity component
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BASICS: Detecting highly variable genes

We identify HVG using tail posterior probabilities associated to a HIGH
biological cell-to-cell heterogeneity component

For a given variance threshold ~,,, and evidence threshold «,,, BASICS
labels a gene as HVG if:

7' (7,) = P (0i > 7,| {Data}) > «,

o; = proportion of total variability explained by cell-to-cell biological

heterogeneity (in a typical cell)
5,‘(9 + 1)

[(fs)*pil = + 60+ 6i(6 +1

g =

h * = medi i
o Where (¢s) median {05}
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BASICS: Detecting lowly variable genes

Similarly, we identify LVG using tail posterior probabilities associated to a
LOW biological cell-to-cell heterogeneity component
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BASICS: Detecting lowly variable genes

Similarly, we identify LVG using tail posterior probabilities associated to a
LOW biological cell-to-cell heterogeneity component

For a given variance threshold ~,, and evidence threshold ¢, , we classify
as LVG those genes for which:

mi'(7.) = P(o; <7,| {Data}) >,
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BASICS: Control of error rates for HVG and LVG detection

The variance thresholds +,, and +, are biologically meaningful quantities
and can be fixed prior to the analysis
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BASICS: Control of error rates for HVG and LVG detection

The variance thresholds «,, and ~, are biologically meaningful quantities
and can be fixed prior to the analysis

For fixed v, and ~,, evidence thresholds o, and o, can be chosen by
controlling the trade-off between

e Expected False Discovery Rate (EFDR)

_ S0 mn6) > o
FFPRa = () > o)

e Expected False Negative Rate (EFNR)

YR m()I(mi(y) £ @)
FPRe = P (mi(y) < )
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BASICS: Posterior inference



Bayesian Inference

Definition (Bayes Theorem)

f(Xy)r(v)
Jf(XIy)7m(v) dy

m(vX) =
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Bayesian Inference

Definition (Bayes Theorem)

f(Xy)r(v)
Jf(XIy)7m(v) dy

m(vX) =

e f(X]y) is the likelihood function of X for a given value of
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Bayesian Inference

Definition (Bayes Theorem)

(X)) 7r(y)
) = TR X))

e f(X]y) is the likelihood function of X for a given value of

e 7(y) is the prior density assigned to
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Bayesian Inference

Definition (Bayes Theorem)

(X)) 7r(y)
) = TR X))

e f(X]y) is the likelihood function of X for a given value of
e 7(y) is the prior density assigned to

e m(vy|X) is the posterior density of ~ after observing X
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BASICS: The prior

The Bayesian model is completed using the following priors:

Wi~ Iog—NormaI(O,st) fori=1,...,qo,

.
o nY(¢1,...,¢n) ~ Dirichlet(py, ..., pn)
° s i Gamma(as, bs) for j=1,...,n,

e O ~ Gamma(ay, by)

o 6; "¢ Gammal(as, bs) for i =1,. ... qo,

Results are robust to changes on hyper-parameter values
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BASICS: Posterior inference

BASICS involves a large number of parameters and exact posterior
inference not possible

Instead, we use Markov Chain Monte Carlo (MCMC) methods to
generate samples from the posterior distribution
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BASICS: Posterior inference

The sampler is based on the model

; NB (6%, —24M ) i=1,...,qo;
XU’¢j7sjaui7Vj7675i ”,Ld <I 7d)J'Vj:U'iJF(;FI ! ’ > 0

Poisson (1), i=qg+1,...,q.

for which the p; ;'s are integrated out.

We use an Adaptive Metropolis Hastings within Gibbs algorithm
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BASICS: Posterior inference

Definition (Gibbs Sampler?)

Let v = (71,...,7p) be a P-dimensional vector of parameters. Given an
initial guess 7(© = ({7, ... ,fy,(;)) at each iteration m

sample ™™ from m(y1|X™, ... ,'y,(; ). X),
sample %™ from (ol +1),7§m),...,7P ). X),
sample 7,(3"’“) from 7(~p ™), ...,fy,(,'ﬁl),X).

For large m, the distribution of v(™ converges to m(7|X)

These distributions are referred to as full conditionals

1. Geman and Geman, IEEE Transactions on Pattern Analysis and Machine Intelligence (1984)
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BASICS: Posterior inference

In our case, the full conditionals of parameters of the “same type”
factorise due to conditional independences.

Therefore, computational complexity is simplified
= e.g. simultaneous updates for ji1,. .., jiq,
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BASICS: Posterior inference

In our case, the full conditionals of parameters of the “same type”
factorise due to conditional independences.

Therefore, computational complexity is simplified
= e.g. simultaneous updates for ji1,. .., jiq,

However, most of the required full conditionals do not have a
known form

= direct samplers are not available

= we need to implement specialised samplers
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BASICS: Posterior inference

Definition (Metropolis-Hastings!?)

Given a starting value (%), at each iteration m
@ Sample v ~ Unif(0,1) and 7* ~ g(v*|7(™).
@® Define

m(v*1X) q(v'™|y*) } .

(m) = [mof

© If v < a(y(™, 4*|X), return v*. Otherwise, return ~(™.

These steps generate samples from (| X).

1. Metropolis et al., The Journal of Chemical Physics (1953) 2. Hastings, Biometrika (1970)
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BASICS: Posterior inference

A common choice for g(7*|7{(™) is a Normal(y(™, w?) distribution

Where the value of w? is tuned to control the acceptance rate (i.e.
the proportion of times that draws are accepted)
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BASICS: Posterior inference

A common choice for g(7*|7{(™) is a Normal(y(™, w?) distribution

Where the value of w? is tuned to control the acceptance rate (i.e.
the proportion of times that draws are accepted)

A solution is to use an Adaptive Metropolis-Hastings! algorithm

e Calculate the current acceptance rate

Every 50 )

iterations e If it is too high, increase w

e If it is too small, decrease w?

Diminishing increments = w? will stabilise
1. Roberts and Rosenthal, Journal of Computational and Graphical Statistics (2003)
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Final remarks



Final remarks

scRNA-seq can reveal novel insights about transcriptional regulation

e However, analysing scRNA-seq is not a trivial task due to

e Quality control
e Normalisation
e Technical variability

Methods used for bulk RNA-seq datasets cannot be directly applied

e Our approach borrows information from intrinsic genes and technical
spike-in genes, simultaneously = avoid stepwise procedures
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Extensions

BASICS will soon incorporate 2 of the most widely applied
downstream analyses

e Differential expression

e Clustering
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Extensions

BASICS will soon incorporate 2 of the most widely applied
downstream analyses

e Differential expression

e Clustering

Another extension relates to scalability

= New technologies allow sequencing of huge numbers of cells
e.g. Drop-seq! ~ 40000 cells (and no spikes!)

1. Macosko et al., Cell (2015)
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Before the lab session ...

After lunch we will have a practical session

Before we start, please visit:

https://github.com/catavallejos/ Tutorial BASiCS
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