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Biomarker Discovery as a Pattern Mining Problem

Finding groups of disease-related molecular factors

Single genetic variants, gene expression levels, protein abundancies are often not
sufficiently indicative of disease outbreak, progression or therapy outcome.

Searching for combinations of these molecular factors creates an enormous search space,
and two inherent problems:

1 Computational level: How to efficiently search this large space?
2 Statistical level: How to properly account for testing an enormous number of hypotheses?

The vast majority of current work in this direction (e.g. Achlioptas et al., KDD 2011)
focuses on Problem 1, the computational efficiency.

But Problem 2, multiple testing, is also of fundamental importance!
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Biomarker Discovery as a Pattern Mining Problem

Feature Selection: Find features that distinguish classes of objects

Pattern Mining: Find higher-order combinations of binary features, so-called patterns,
to distinguish one class from another
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Mining Significant Patterns

Fisher’s exact test

Contingency Table

S = 1 S = 0

y = 1 a n1 − a n1

y = 2 x − a n − n1 − x + a n − n1

x n − x n

A popular choice is Fisher’s exact test to test whether S is overrepresented in one of the
two classes.

The common way to compute p-values for Fisher’s exact test is based on the
hypergeometric distribution and assumes fixed total marginals (x , n1, n).
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Mining Significant Patterns

Multiple Testing Problem

Each S and contingency table corresponds to one hypothesis that is tested.

To control the Family-Wise Error Rate (probability of detecting at least one false
positive), we have to perform multiple testing correction.

Without multiple testing correction, we will discover millions and billions of false
positives in biomarker discovery.

The classic approach is Bonferroni correction (1936), dividing the significance level α by
the number of tests m, that is, α

m .
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Mining Significant Patterns

Tarone’s approach (1990)

For a discrete test statistics T (S) for a pattern S , such as in Fisher’s exact test, there is
a minimum obtainable p-value, pmin(S).

For some S , pmin(S) > α
m . Tarone refers to them as untestable hypotheses S̄.

Tarone’s strategy: Ignore untestable hypotheses S̄ when counting the number of tests
m for Bonferroni correction.

If the p-values of the test are conditioned on the total marginals (as in Fisher’s exact
test), this does not affect the Family-Wise Error Rate.

Difficulty: There is an interdependence between m and S̄.
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Mining Significant Patterns

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level αk .

Then the optimization problem is

min k

s. t. k ≥ m(k)
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Mining Significant Patterns

Tarone’s approach (1990)

Assume k is the number of tests that we correct for.

m(k) is the number of testable hypotheses at significance level αk .

procedure Tarone

k := 1;
while k < m(k) do

k := k + 1;

return k
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Mining Significant Patterns

Terada’s link to frequent itemset mining (Terada et al., PNAS 2013)

For 0 ≤ x ≤ n1, the minimum p-value pmin(S) decreases monotonically with x .

One can use frequent itemset mining to find all S that are testable at level α, with
frequency ψ−1(α).

They propose to use a decremental search strategy:

procedure Terada’s decremental search (LAMP)

k := ”very large”;
while k > m(k) do

k := k − 1;
m(k) := frequent itemset mining(D, ψ−1(αk ));

return k + 1
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Example: PTC dataset (Helma et al., 2001)
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Significant Subgraph Mining (Sugyiama et al., SDM 2015)

Significant Subgraph Mining

Each object is a graph.

A pattern is a subgraph in these graphs.

Typical application in Drug Development: Find subgraphs that discriminate between
molecules with and without drug effect.

Counting all tests (= all patterns) requires exponential runtime in the number of nodes.
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Significant Subgraph Mining (Sugyiama et al., SDM 2015)

Incremental search with early stopping

procedure Incremental search with early stopping

θ := 0
repeat

θ := θ + 1; FSθ := 0;
repeat

find next frequent subgraph at frequency θ
FSθ := FSθ + 1

until (no more frequent subgraph found) or (FSθ >
α

ψ(θ) )

until FSθ ≤ α
ψ(θ)

return ψ(θ)

α
ψ(θ)

is the maximum correction factor, such that subgraphs with frequency θ can be significant at level ψ(θ).
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Significant Subgraph Mining on PTC Dataset
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Significant Subgraph Mining: Correction Factor
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Significant Subgraph Mining: Runtime
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Dependence between hypotheses

As patterns are often in sub-/superpattern-relationships, they do not constitute
independent hypotheses.

Informally: The underlying number of hypotheses may be much lower than the raw
count.

Westfall-Young-Permutation tests (Westfall and Young, 1993), in which the class labels
are repeatedly permuted to approximate the null distribution, are one strategy to take
this dependence into account.

Computational problem: How to efficiently perform these thousands of permutations?

There is one existing approach, FastWY (Terada et al., ICBB 2013), which suffers from
either memory or runtime problems.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

The Algorithm

1 Input: Transactions D, class labels y, target FWER α, number of permutations jp.

2 Perform jp permutations of the class label y and store each permutation as cj .

3 Initialize θ := 1 and δ∗ := ψ(θ) and p
(j)
min := 1.

4 Perform a depth first search on the patterns:

Compute the p-value of pattern S across all permutations, update p
(j)
min if necessary.

Update δ∗ by α-quantile of p
(j)
min, and increase θ accordingly.

Process all children of S with frequency ≥ ψ−1(δ∗).

5 Output: Corrected significance threshold δ∗.
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Westfall-Young light (Llinares-Lopez et al., KDD 2015)

Speed-up tricks of Westfall-Young light

Follows incremental search strategy rather than decremental search strategy of FastWY

Performs only one iteration of frequent pattern mining

Does not store the occurrence list of patterns

Does not compute the upper 1− α quantile of minimum p-values exactly.

Reduces the number of cell counts that have to be evaluated

Shares the computation of p-values across permutations
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Westfall-Young light

Runtime
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Westfall-Young light

Final frequency threshold (support)
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Westfall-Young light

Peak memory usage
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Westfall-Young light

Better control of the Family-wise error rate (Enzymes)
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FAIS: Finding intervals that exhibit genetic heterogeneity

Genetic heterogeneity

Genetic heterogeneity refers to the phenomenon that several different genes or sequence
variants may give rise to the same phenotype.

The correlation between each individual gene or variant and the phenotype may be too
weak to be detected, but the group may have have a strong correlation.

The only current way to consider genetic heterogeneity is to consider fixed groups of
variants. Genome-wide scans cause tremendous computational and statistical problems.

Fast Automatic Interval Search (Llinares-Lopez et al., ISMB 2015)

FAIS finds all contiguous sets of variants that are significantly associated with a given
phenotype under a model of genetic heterogeneity.
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FAIS: Finding intervals that exhibit genetic heterogeneity
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FAIS: Finding intervals that exhibit genetic heterogeneity

Finding trait-associated genome segments with at least one minor allele
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An interval is represented by its maximum value. The longer an interval, the more likely
it is that this maximum is 1.
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FAIS: Finding intervals that exhibit genetic heterogeneity
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Pruning criterion 1: If an interval is represented by 1 for too many individuals, the
interval is not testable.

Department Biosystems Karsten Borgwardt ITN Summer School Manchester September 24, 2015 26 / 34



FAIS: Finding intervals that exhibit genetic heterogeneity
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Pruning criterion 2: If an interval is too frequent to be testable, then none of its
superintervals is testable.

Department Biosystems Karsten Borgwardt ITN Summer School Manchester September 24, 2015 27 / 34



FAIS: Finding intervals that exhibit genetic heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over the brute-force
interval search in terms of runtime in simulations.
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FAIS: Finding intervals that exhibit genetic heterogeneity
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Our method FAIS (Fast Automatic Interval Search) improves over brute-force interval
search and univariate approaches in terms of power in simulations.
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FAIS: Finding intervals that exhibit genetic heterogeneity

70% (152)
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Novel Intervals
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Most significant intervals would have been missed by univariate approaches (UFE and
LMM) on 21 binary phenotypes from Arabidopsis thaliana (Atwell et al., Nature 2010).
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Outlook

Current and future topics

Better empirical understanding of the impact of considering testability

Pattern summarization

Conditioning on covariates, e.g. to model population structure: Recent arvix paper
(Llinares-Lopez et al., 2015) which ignores untestable patterns in the
Cochran-Mantel-Haenszel test on K 2 × 2 contingency tables.

Two postdoc positions and one PhD student position are available within this Starting
Grant project ’Significant Pattern Mining’.
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Horizon 2020

References: http://www.bsse.ethz.ch/mlcb
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