MANCH

Discovering Sub-diseases with Model-based Machine Learning

Iain Buchan

Director, Farr Institute @ Health eResearch Centre

Director, Centre for Health Informatics, University of Manchester

23rd September 2015

Machine Learning for Personalized Medicine Summer School, Manchester

Endotype Discovery

Aim to identify **subgroups** ("endo-phenotypes" or "endotypes") of disease risk or treatment outcome explained by a **distinctive** underlying **mechanism**

Foundation of **Stratified Medicine**, seeking better-targeted interventions

M.C. Escher Order and Chaos, 1950

Asthma: Low GWAS Yield

 Legacy of non-replicated genetic epidemiology, typical of most common chronic disorders

🛧 Linkage in 1 study only

 \star Linkage in >1 study

Asthma: Gene \cup **Environment**

 Important gene-environment interaction information may be averaged out in narrow or aggregated studies

CD14 Endotoxin Receptor

 \bigstar C allele associated

 \star T allele associated

 \star No association

Asthma: Heterogeneity

- Usually starts early in life, and may progress, remit or relapse over time
- Single cohort study hypothesis-driven epidemiology lacks temporal and environmental complexity needed to smoke out endotypes

Scaling-up

Multi-cohort

- Different windows on calendar time
- Different windows on human development
- Variety of **populations**
- Variety of environments
- Multi-disciplinary and multi-perspective
 - Biostatistics (deductive) and machine-learning (inductive)
 - Tapestry of **reasoning** about mechanisms
- Hypothesis forming and following

Health Data: No Mining Please

...Health is measured with **error** and **missingness**: Endo-phenotypes are resolved as if the researcher was looking through a prism and doyley at the problem

Hypothesising with Data

New Asthma Risk Factor Found

Cross Cohort Team Research

Data & Harmonized Metadata from Cohorts

MRC STELAR Consortium: www.asthmaelab.org

'Learned' Atopy Classes Portable

Lazic et al, Allergy 2013; 68(6): 764-70

Risk Factor Development

Belgrave et al, Am J Respir Crit Care Med 2014;189(9):1101-9

Assumed Biology: Atopic March

- Progression of allergy
 Eczema → Asthma → Rhinitis
- Inferred from **population** summary \rightarrow
- Assumed causal link between eczema – asthma & rhinitis
- Clinical response: target children with eczema to reduce progression to asthma

From: World Allergy Organization, 2014

Individual-level Longitudinal Analysis

Myth Bust by Learning from Data

MRC | Medical Research Council

MRC STELAR consortium working at scale across MAAS and ALSPACS cohorts

From: Belgrave et al. Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies. PlosMedicine 2014

Joined-up Bio-Health Modelling

Real World Phenomarking

Primary Care

Renal Medicine

Diabetology

generate real world evidence on gliflozins His GP... Lifestyle factors: diet, exercise

?how to

His nephrologist...

BP control

Valderas JM, Starfield B, Sibbald B, Salisbury C, Roland M. Defining comorbidity: implications for understanding health and health services. Ann. Fam. 2009;7:357–363. ↑ Weight → ↑ BP

3 x evidence pipelines

1 x complex patient

Total evidence-base

predicts < 30% outcomes

Mr Jones...

His diabetologist...

Glucose control

Dual Therapy for Diabetes

Data: Does Size Matter?

DATA

METHODS & OUTPUTS

TSUNAMI HAZARD ZONE
IN CASE OF EARTHOUAKE GO
TO HIGH GROUND OR INLANDImage: Constant of the second sec

More data * small-scale research = more small-scale research >n with >heterogeneity can *reduce* 'power'

Ioannidis JPA. Why most published research findings are false. PLoS Med. 2005 Aug;2 (8):e124.

Overhage JM, Ryan PB, Schuemie MJ, Stang PE. Desideratum for evidence based epidemiology. Drug Saf. 2013 Oct;36 Suppl 1:S5-14.

EXPERTISE

Beyond In-licensed Data

Key Local Metadata

Connected Health Cities

Clinical Outcome Prediction

Production line of clinical prediction models is broken

EU Directive 2007/47: The law now sees algorithms as medical devices

From G. Hickey & B. Bridgewater

Health System Extension: Mobile

Aim: To Reduce Relapse in Schizophrenia via Smartphone Drug + behaviour (information * psychological endotype) = outcome

Digital Health Triangle

Digital Health Economy (20**?)

Ubiquitous technologies Unifying models Usable interfaces (avatar etc.) Stratification ↔ personalisation Actionable micro-evidence Service ↔ research

Depth, Trust and Scale

PUBLIC TRUST PUBLIC TRUST Learning Health System e.g. "Connected Health City"

^oatient / Mobile Data

Shared Care Record

Molecular characterisation

Core Outcomes

Dynamic Prediction Models

Clinical Performance Networks

Routine Randomisation

Learning from Other Systems

From care + data → research → translation

To a federation of research in care: pulled & shaped by local communities, with academic and industry partners

Sub-disease Research Tips

- 1. Target
 - Plausible diagnostic **aggregation**
 - Unexplained **variation** in clinical outcomes
- 2. Data
 - Multiple populations/settings (heterogeneity & replication)
 - Useful **temporal** structure
- 3. Analytics
 - Multi-perspective ML **pre-model framing** don't rush in!
 - Heuristic **phenomarker-biomarker** resolution

