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Endotype Discovery

Aim to identify subgroups (“endo-phenotypes” or Yendotypes”)
of disease risk or freatment outcome explained by
a distinctive underlying mechanism

Foundation of Stratified Medicine,
seeking better-targeted interventions
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« Legacy of non-replicated genetic epidemiology,
typical of most common chronic disorders

% Linkage in 1 study only
Y Linkage in >1 study




Asthma: Gene U Environment

« Important gene-environment interaction information may be
averaged out in narrow or aggregated studies

CD14 Endotoxin Receptor
Y% C allele associated
Y T allele associated

Y No association




Asthma: Heterogeneity

« Seems to be a collection of several diseases,
each with distinctive pathophysiology,
and environmental u genetic associates (“asthma endotypes”)

« Usually starts early in life,
and may progress, remit or relapse over fime

« Single cohort study hypothesis-driven epidemiology
lacks temporal and environmental complexity
needed o smoke out endotypes



Scaling-up

* Multi-cohort
— Different windows on calendar time
— Different windows on human development
— Variety of populations
— Variety of environments

« Multi-disciplinary and mulii-perspective
— Biostatistics (deductive) and machine-learning (inductive)

— Tapestry of reasoning about mechanisms

« Hypothesis forming and following
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Health Data: No Mining Please

Problem Space Observation Space Data Space

AN o &

y=b1x1 + b2x2 + b3x3 + C

...Health is measured with error and missingness:
Endo-phenotypes are resolved as if the researcher
was looking through a prism and doyley at the problem
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Hypothesising with Data

\

8 Allergens

Sensitized Sensitized Sensitized Sensitized
Age 1 Age 3 Age 5 Age 8

! l ! l

Skin Test NRIES] N RIES] Skin Test
Age 1 Age 3 Age 5 Age 8

P(Sens'n)
inyear 1

Mite
Cat
Dog
Pollen
Egg
Milk
Blood Test Blood Test Blood Test Blood Test Mold
Age | A Age 8

P(Gain)
P (Loose)
Sens'n

3 intervals

Sens’'n state Peanut

P(+ skin) P(+ blood)
Sens’ Sens’
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infer.net
Machine-learning software
& partial statistical models
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New Asthma Risk Factor Found

Asthma Persistent Current
i exacerbation
AIIerglc Asthma wheeze wheeze
et after age 1
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Cross Cohort Team Research

Data & Harmonized

MRC STELAR Consortium: www.asthmaelab.org

Metadata from Cohorts

MAAS
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http://www.asthmaelab.org/

MAAS asthma (11y) IoW asthma (10y)

Atopy (11y)} =l Atopy (10y)
Class 1 j-m— Class 1
Class 2} —8— Class 2
Class 3} —-=— Class 3

Class 4 Class 4

Lazic et al, Allergy 2013; 68(6): 764-70
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Risk Factor Development

1.6 -
1.5 1
& 14- .
== Risk group
= 13 ‘induced’ from data
x - shows different
. natural history of
' airways resistance
1.1 1
3 5 8 1
Age (Years)
—8—  Non-Alopic (n=622) ——@—— Multiple early atopy (n=112)

Belgrave et al, Am J Respir Crit Care Med 2014;189(9):1101-9
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Assumed Biology: Atopic March

From: Spergel & Paller, 2003

Atopic Dermatitis ===

» Progression of allergy g s —
Eczema — Asthma — Rhinitis

Prevalence

* Inferred from population summary —

Age

 Assumed causal link between
eczema — asthma & rhinitis

From: World Allergy Organization, 2014

« Clinical response:
target children with eczema
to reduce progression to asthma
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Individual-level Longitudinal Analysis

Eczema Propab Probab Propab
Class ‘ ‘
Wheeze ) delok]e Probab Probab Probab Probab
Class eeze AgE eeze AgE eeze Age cCiC e &
Rhinitis N Probab Probab Probab
Class R : R : R
Children (n=9801)
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Myth Bust by Learning from Data

Persistent Eczema and Persistent Eczema with

No Disease (n=5023) Atopic March (n=302) Wheeze (n=266) Later-onset Rhinitis (n=456)
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Joined-up Bio-Health Modelling

Biological Given Modelled Clinical

Mechanisms Phenotype Phenotype Qutcomes

Bioinformatics Health Informatics

Integrative Informatics needed

Biomarker lIterate Phenomarker

/

Portable Model .FQ‘ r
“The Farr Institute of
O v, Health Informatics Research

(not a fixed label/rule)



Real World Phenomarking

Ol Total evidence-base
Q predicts < 30% outcomes

¢how fo

generate ‘Primary Care oo

real world Trenal Medicine T Mr Jones...
evidence on », Diabetology -

gliflozins e RSO T R -

His GP... ,

Lifestyle factors: / / ==
diet, exercise g iy

= = His diabetologist...
His nephrologist... B \
. - 3 x evidence pipeline&
BP control 1 x complex patient olelglife]

Valderas JM, Starfield B, Sibbald B, Salisbury
C., Roland M. Defining comorbidity:
implications for understanding health and
health services. Ann. Fam. 2009;7:357-363.
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Dual Therapy for Diabetes

=
Met'SU —— et TLD
senriiies [etDPP-4
g
:
Heterogeneity of individual treatment response
2
i Stratified Medicine = find & treat more subgroups
| Personalised Medicine = optimise individual’s response
; .
3 | Iy
) T

Data source: CPRD

Analysis: A Wright, D Ashcroft, R Emsley

Time to microvascular event from diagnosis of diabetes
Inverse probability weighted marginal structural model
Average causal effects of dual therapies




Data: Does Size Matter?

DATA EXPERTISE

g

IN CASE OF EA
T0 HIGH GROU

. =
LN
2

Supra-linear growth
in papers & tools

Similar number of
analysts

Vast volume,
velocity, variety...

BLIZZARD

DROUGHT

TSUNAMI

.

More data * small-scale research = more small-scale research
>n with >heterogeneity can reduce ‘power’

loannidis JPA. Why most published research findings are false.

PLoS Med. 2005 Aug;2 (8):e124. o)
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evidence based epidemiology. Drug Saf. 2013 Oct;36 Suppl 1:55-14.



Beyond In-licensed Data

5%

Bias from different:
population samples;
clinical IT;

N
R

coding practices;
data cleaning

3%

=$=GPRD - diagnhostic codes
=fll=GPRD - all codes
wde=THIN

2% e (Q-research
=== QOF

Estimated UK Prevalence of Diabetes

1% -

Consider the GP annotation Consider Vioxx Ml risk detectable
on a diabetes code “DM r/o” pre-2005 via text not coded data

0%

O
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Year i :
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Key Local Metadata

Haemoglobin (g/L)

170

150

130

110

S0

70

NEW UNDERSTANDING AND BETTER CARE
OF ANAEMIA IN DIABETICS

Kidney Function (Creatinine, Age, Sex)

DIFFERENT FORMULA PER CREATININE ASSAY

20 40 60 80 100 120 140

Estimated Glomerular Filtration Rate (ml/min/1.73m?)

Data source:
Salford eHR
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Missed Opportunities Detector

/ CHESIER
1824

The University of Manchester

|
Exclude if Exclude if
quality quality
standard standard
inappropriate achieved

Example Example Example Example
\ CKD Terminal illness BP target Rx op’rimiza’rio

[
(. ) 4

Salford Clinical Commissioning Group Web Interface

|dentify

ldentify how
care could be
improved

patients with
target disease

~N

m Practice-  FipIERdiiEAEEVEl

level Audit ¢ Decisions

Salford Integrated Record
\ 234k popln)

R 1

53 GP Practices + 1 Hospital

— Care Professionals
oooo
\ o
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From B. Brown



Connected Health Cities

Farr Institute & NIHR Centres

Public
sector
encounters

Ark

Spin-in/out Laboratory
Involved Citizens

Problem Owners
Targeted Data Managers t
by need Public Health Analysts
Care Service Analysts
Statisticians
Informaticians
Social Scientists o —

Services _ To';%ilng « Health Economists — Planning

|nsigh1’s and POllcy

w Global Corp.

Health Service
Researchers
Communications Experts

Which services and how?




Mortality (proportion)

O:E ratio

Clinical Outcome Prediction

0.04 0.06 0.08 0.10

0.02

0.6 0.7

0.5

0.4

—— Observed — Actual
— Expected --- Overall average
---- Trend

Production line of
clinical prediction models

is broken

e  (O:E ratio
LOESS

Typical calibration drift

!

EU Directive 2007/47:

The law now sees algorithms as
medical devices

(TTTTT T T T I T T I T I T T T T T T i T T T T T I T T TTTTTod
2002 2004 2006 2008 2010
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Health System Extension: Mobile

Aim: To Reduce Relapse in Schizophrenia via Smartphone

Drug + behaviour (information * psychological endotype) = outcome

Patient-Care team direct contact
Medical web
Research
MRC Council

ﬂareLoop \ Care Team

/\/m : j‘
web \ > Views
Alerts

14
Question

1

| have felt
optimistic about
the future

SMS/Email

Interventions

fi

Mobile Data

Network / \ Monitoring j
Internet
Mobile Phone

Informatics

self-report intervention
Patient
{ l Diary

. \ Database
Patient
- ~—— C]@ rlo,
. L]
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|
I
|
l Triggers
|
|
|
v

Not at all Very much
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From J. Ainsworth & S. Lewis



Digital Health Triangle

Citizen Digital Health Economy
/Pafient (20%?)

Ubiquitous technologies
Unifying models

Health & Usable interfaces (avatar etc.)
Care IS Stratification < personalisation
Health Ally ACICUEI  Actionable micro-evidence
/Care Prof. /Evidence Service o research

Two Worlds of Healthcare

Records Care |.S. Care (2015)
Guidelines (regulated) Lo d Professionals

*
P
AL
:

==
"
‘. ? ]
. ®

“

ApPPS & sensors
Healthcare information
Social networks

Consumer IS
(unregulated)




Depth, Trust and Scale

From care + data
- research
- franslation

Learning Health System
e.g. “Connected Health City”

To a federation of
research in care:
pulled & shaped by
local communities,
with academic and
industry partners

Patfient / Mobile Data
Shared Care Record
Molecular characterisation
Core Outcomes
Clinical Performance Networks
Routine Randomisation
Learning from Other Systems

Dynamic Prediction Models
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Sub-disease Research Tips

1. Target
— Plausible diagnostic aggregation
— Unexplained variation in clinical outcomes

2. Data
—  Multiple populations/settings (heterogeneity & replication)
—  Useful temporal structure

3. Analytics

—  Multi-perspective ML pre-model framing — don’t rush in!
— Heuristic phenomarker-biomarker resolution
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