Heritability-based models for prediction of

complex traits

David Balding
(with much help from Doug Speed, funding: UK MRC)

Schools of BioSciences and of Maths & Stats
University of Melbourne
and UCL Genetics Institute London

Summer School, European Network on Machine Learning for
Personalised Medicine, Manchester, 21 September 2015



SNP-based heritability analysis: born 2010

Common SNPs explain a large proportion of the heritability

for human height
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Peter M Visscher!

SNPs discovered by genome-wide association studies (GWASs)
account for only a small fraction of the genelic variation of
complex traits in human populations. Where is the remaining
heritability? We estimated the proportlion of variance for
human height explained by 294,831 SNPs genotyped on

3,925 unrelated individuals using a linear model analysis, and
validated the estimation method with simulations based on
the observed genotype data. We show that 45 % of variance
can be explained by considering all SNPs simultaneously. Thus,
most of the heritability is not missing but has not previously
been detected because the individual effects are too small

to pass stringent significance tests. We provide evidence

that the remaining heritabilily is due to incomplete linkage
disequilibrium between causal variants and genotyped SNPs,
exacerbated by causal variants having lower minor allele
frequency than the SNPs explored to date.

of variation that their effects do not reach stringent significance
thresholds and/or the causal variants are not in complete linkage
disequilibrium (LD) with the SNPs that have been genotyped. Lack
of complete LD might, for instance, occur if causal variants have lower
minor allele frequency (MAF) than genotyped SNPs. Here we test
these two hypotheses and estimate the contribution of each to the
heritability of height in humans as a model complex trait.

Height in humans is a classical quantitative trait, easy to measure
and studied for well over a century as a model for investigating the
genetic basis of complex traits®!?, The heritability of height has been
estimated to be ~0.8 (refs. 9,11—13). Rare mutations that cause extreme
short or tall stature have been found!*!%, but these do not explain
much of the variation in the general population. Recent GWASs on
tens of thousands of individuals have detected —50 variants that are
associated with height in the population, but these in total account
for only —5% of phenotypic variance!6-19,
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SNP-based heritability analysis: slope of regression line
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Heritability: key ideas

Heritability is the fraction of phenotypic variance that can be
explained by genetics. Related individuals have correlated
genotypes: heritability measures the extent to which this implies
correlated phenotypes.
> It measure how “genetic” a trait is, relative to
"environmental”’ causes, so it is environment-specific.
> We are mostly concerned with “narrow sense” heritability or
h? and so only additive genetics. h? is the variance explained
by a linear regression

E[Y] = 6o+ 65X =Xp
j

where Y is phenotype, X is genotype (additive coding;
standardised) at jth locus, and the sum is over causal loci.

» Problem: we don't know the causal variants or effect sizes.



Clever idea: mixed model approach

Assuming a Gaussian model, the linear regression can be
formulated as a mixed regression model:

Y=v+c¢
where Var[e] = 21 and 7 is a latent genetic “random effect” with
Var[y] = 02K. Then h? = 02 /(03+02).
» Estimation of O'é and o2 usually done via REML.

> Ideally we want K = (X3)(X3)" but we don't know 3 or X.

» Traditional approach has been to approximate K by kinship
coefficients computed from pedigrees.



What's wrong with pedigree-kinship?

Through familiarity, pedigree-based kinships came to be seen as
the canonical measures of relatedness, but they aren't very good.

» They depend on the pedigree that happens to be available:
there is no such thing as a complete or ideal pedigree.
» What matters is allele sharing at causal loci, but pedigrees
only specify expected, genome-wide allele sharing;
» The fraction of genome shared by sibs from their parents can
be < 0.4 or > 0.6.
In fact, there is no definitive way to measure the kinship of two
individuals, and it is better to speak of genomic similarity, which
can be measured from genome-wide SNPs or sequences.

See: Speed & Balding “Relatedness in the post-genomic era: is it
still useful?” Nat Rev Genet Jan 2015



Genome sharing between pairs of “regular” relatives
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Statistics of IBD sharing (update of Donnelly 1983)

# #| 0(A B) PIBD E[# E[r]
Relationship G A | E[IBD]/4 95% Cl >0  sr]  (Mb)
Sibling 1 2| 0250  (0.204,0.296) | 1.000 853 31.3
1/2sib 1 1| 0125  (0.092,0.158) | 1.000 426 "
Cousin 2 2| 0.063  (0.039,0.089) | 1.000 37.1 18.0
1/2-cuz 2 1| 0.031 (0.012,0.055) | 1.000 185 "
2nd-cuz 3 2 | 0.016  (0.004,0.031) | 1.000 132 126
|1/2-2nd-cuz 3 1| 0.008  (0.001,0.020) | 0.995 66 " |
3rd-cuz 4 2| 0.004 (0.000,0.012) | 0.970 43 9.7
5 2| 0001 (0.000,0.005)| 0675 07 7.9
7 2] (1/2)* (0.000,0.001) | 0.098 0.1 55
9 2| (1/2)8 0.009 00 44

G: # generations: we consider a single lineage path of 2G steps;
A: ancestors; sr = shared regions; rl = region length



SNP-based measures of genomic similarity

There are many ways to measure genetic similarity of two
individuals from genome-wide genetic markers (SNPs),

» which one is the best?

One difficulty in humans is that we are all closely related:

» Any two haploid human genomes share over 99.9% sequence
identity due to shared ancestry.
» This isn't evident for SNPs because they are highly
polymorphic, but
» measures of similarity can depend sensitively on the Minor
Allele Fraction (MAF) spectrum.
» more low-MAF sites = more similarity.
» MAF spectrum depends on SNP chip and QC.



SNP-based kinships

Two approaches:

» Average haplotype sharing. Useful in some settings, but
small (e.g. < 1Mb) shared fragments are informative yet hard
to exploit.

» Genome-wide average of a single-SNP measure.

Single-SNP approach 1: Average allele-sharing
» Given two individuals, code the SNP genotypes of each as 0,1

and 2, where 1 = heterozygote. Average the following scores:

(0,0) or (2,2) - 1
(0,1),(1,1) and (1,2) — 1/2
(0,2) - 0

» Disagreement about how to code heterozygotes: PLINK codes
(1,1) as 1, rather than 0.5.



single-SNP approach 2: Average allelic correlation

Write Gj; for genotype of i at the jth SNP (allele count), then for i
and /" use genome-wide average of single-SNP sample-size-1
correlation estimates:

m

Iy @2 s Lxxr
2pi(1—pj) m

J=1

Now K has contributions from genome-wide SNPs:
> better than pedigrees: actual allele sharing

» worse: causal variants contribute only if tagged by SNPs
(biased towards common variants)



Squared Phenolype Differance

Yang et al. (2010) estimated h? using mixed-model with
average-allelic-correlation K from genome-wide SNPs.

> A key feature is the use of unrelated pairs of individuals.

With Close Relatives Without Close Relatives 1
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Heritabilities of some human traits
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Mixed-model estimation of SNP-A% works well

We conducted a simulation study to investigate the robustness of
h? based on this method. See Speed et al. Am J Hum Genet
(2012) for details. We found the method to be remarkably robust
to

» number of causals,

» causal MAF spectrum,

» effect size distribution
But ...



h? estimates not robust to LD
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Reweighting to reduce the problem of uneven tagging

Ys Y 1 Vls  YaVaVaYa Weightings
B, B, B, BB,  BBBS,
L1 | L L
1 | L 1w Gensol\%sed
X, X, X, XX, XXKX,
| “‘| | Underlying
I I I 1 Variation
U U U U



Reweighting improves estimation of h?

Heritability Estimates from 50 Replicates
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Tagging of Causal SNPs
This reweighting is implemented in Doug Speed’s software for h?

estimation and prediction, LDAK (LD-Adjusted Kinships)
http://dougspeed.com/Idak/



How are causal variants distributed with respect to LD?
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How are causal variants distributed with respect to LD?

» Yang et al. Nat Genet 2015 claimed that LDAK
over-estimates h? for sequence data.

» But their simulations distributed causal variants across SNPs
ignoring LD
» So their simulations assume that the problem LDAK is
designed to solve doesn't exist!

» LDAK is based on the idea of downweighting apparent
contributions to h> when LD is high:
» For SNP data, this makes sense, as SNPs in high LD are likely
to be tagging the same causal variant (if any).
» For sequence data, it also seems likely that two SNPs in high
LD tag less causal variation in total than two SNPs in low LD.
» This is an empirical question that can be checked (not easy).



New flexibility in heritability analysis

The mixed-model h? analysis brings with it useful computational
tools, but is now unnecessary and with SNP data better to go back
to the defining linear regression model E[Y] = X[ except now

» use genotyped SNPs as proxies for causal variants;

» apply a Gaussian “shrinkage” distribution on the (3 (ridge
regression)

By restricting to SNPs in particular genomic regions, we can now
investigate the distribution of h% across the genome.

» Pioneered by Yang et al. (2011) but we've made several
improvements.



h? intensity over genomic regions

-log10 p-value

For larger genomic regions we need to compare the heritability
with that expected given the region size.

» "Intensity of heritability” is the heritability per unit genetic
variance of the region.

Apply first to genes and their flanking regions:
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h? intensity of exons and non-genic regions

Intensity of heritability (h2/1000 “SNPs”)

Trait Total h? Exons Intergenic P

Bipolar Disorder 68% 1.7 1.3 0.37
Coronary Artery Disease 44% 3.1 0.6 0.008
Crohn’s Disease 62% 1.6 0.7 0.21
Hypertension 54% 3.6 1.1 0.007
Rheumatoid Arthritis 52% 31 0.3 0.004
Type 1 Diabetes 76% 7.5 0.3 Se-11
Type 2 Diabetes 47% 0.9 0.6 0.40




Intensity of heritability for breast cancer eQTLs

~3K SNPs associated with expression of any gene in tumour
tissue, corrected for somatic effects (from Curtis et al., 2012).

h? intensity

Trait h* eQTLs other SNPs  p
Control-Control 21 0 0.3 0.55
CD 60 5 1 0.055
BD 64 5 1 0.074
CAD 37 1 0.6 0.47
T2D 46 3 0.8 0.16
Hypertension 48 2 0.8 0.30
Schizophrenia 62 0 1 0.76
RA 45 40 0.5 5e-32
T1D 63 70 0.6 2e-88

Many of the tumours have significant lymphocytic infiltration

which could explain the large effect on the auto-immune diseases

RA and T1D.



p-values for h? intensity of eQTLs in different tissue types

Trait BC  Monocytes EB-Lympho Hap Map Brain

C-C 0.55 0.60 0.59 0.38 0.72
CDh 0.055 0.014 0.082 0.24 0.86
BD 0.074 0.078 0.79 0.50 0.92
CAD 047 0.27 0.44 0.30 0.71
T2D 0.16 0.20 0.70 0.46 0.56
Hyp 0.30 0.00027 0.39 0.74 0.93
Schiz  0.76 0.54 0.25 0.84 0.66
RA 5e-32 0.081 0.0070 0.044 0.257
T1D 2e-88  0.00021 7e-16 3e-5 0.75
» Human monocytes, Zeller 2010, PLoS1, n=1500, cis or trans.

>

Epstein-Barr-transformed lymphoblastoid cell lines, Dixon 2007, Nat
Genetics. n=400, cis or trans eQTLs.

HapMap lymphoblastoid cell lines: Choy, 2008, Dimas 2009,
Mongomery 2010, Pickrell 2010, Price 2008, Spielman 2008,
Stranger 2007. n=1400, cis ONLY

Human cortical gene expression, neuropathologically normal human
brain samples (Myers, 2007). n=200, cis ONLY
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Gene-based tests of association using local h?
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Gene-based association applied to three CCC traits
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Extend gene-based tests to meta-analysis and subdivide

genes into exons: Epilepsy consortium 12 cohorts

Single-SNP Meta-Analysis
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Closer look at top 3 hits: by genomic region
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Closer look at SCN1A: by cohort
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Prediction of phenotype from genome-wide SNPs

» The new ideas about heritability are having an impact on
prediction of traits.

» BLUP is a long-established “shrinkage regression” technique
for phenotype prediction, much used in animal/plant breeding.

> It uses a matrix of kinship coefficients to describe phenotype
correlations due to (polygenic) inheritance.

> In the past, pedigree kinships, now SNP allelic correlations.

» MultiBLUP (Speed & Balding, Genome Res, Dec 2014)
extends BLUP by allowing reduced shrinkage in promising
genomic regions.

» Model Y = Zrl\:zl Ym + € where Var[yn] = 02K, with Kp,
computed from SNPs in mth region and Var[e] = o2

» The M regions can be pre-specified or chosen by MultiBLUP.
MultiBLUP is incorporated in the LDAK software.
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Prediction for Crohn's Disease with 5 a priori regions:

3 pathways + 2 genes

Random Effect Region h® | Region r?
IL-9 Signalling 0.006 0.003
IL-2 Receptor Beta Chain 0.003 0.001
IL12 Pathway 0.019 0.016
Gene NOD2 0.012 0.012
Gene IL23R 0.008 0.007
Background Region 0.96 0.09

Correlation of predicted and true values in cross-validation
improves from 0.10 (BLUP) to 0.12 (MultiBLUP with 5 regions).



Adaptive MultiBLUP for WTCCC 1 disease traits

Current methods

Risk Score Stepwise Adaptive
Trait | BLUP  (—log;o(P)) Regression BSLMM | MultiBLUP
BD | 027 025 (1) 0.02 0.27 0.27
CAD | 013  0.12 (1) 0.08 0.15 0.16
CD | 032  0.28(1) 0.18 0.34 0.36
Ht | 015  0.14 (1) 0.00 0.14 0.17
RA 0.21 0.28 (3) 0.32 0.33 0.37
TID | 025  0.34 (5) 0.54 0.57 0.59
T2D | 016 0.14 (1) 0.10 0.17 0.18
Av. 0.21 0.22 0.18 0.28 0.30

Entries are correlations, bold indicates highest predictive accuracy.

Compute times: Risk score / BLUP: < 1 hr, Stepwise Regression:
2 hrs to 5 days, MultiBLUP: 2-3 hrs, BSLMM: 8-30 hrs.



Some larger datasets

Stepwise Regression and BSLMM not feasible.
Performance, measured as correlation (AUC):

Irritable Bowel Disease (12,678 individuals, 1.5M SNPs):
» BLUP: 0.15 (0.58)
» Risk Score: 0.21 (0.63)
> MultiBLUP: 0.34 (0.68)

Celiac Disease (15,283 individuals, 200k SNPs):
» BLUP: 0.40 (0.76)
» Risk Score: 0.44 (0.78)
» MultiBLUP: 0.54 (0.84)



Speed et al. Brain 2014: “heritability” analysis of epilepsy

» Estimated 26% of variance of the liability to “all epilepsy” is
attributable to 4 million genotyped and imputed SNPs (after
correction for population structure effects and genotyping
errors).

» SNPs near previously-reported epilepsy loci explain only about
4% of variance.

» Can similarly attribute heritability to various functional
classifications (up to a margin of error).

» Contribution from different large-scale genomic regions
approximately uniform.

» From lack of genome-wide significant SNPs, inferred 100s and
probably 1,000s of causal variants.

» Common genetic basis of focal and non-focal epilepsy
estimated around 50% of total

» imprecise estimate, but significantly different from both 0 and
100%.

» Showed potential for useful prediction of disease progression

in single-seizure cases.



