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The central dogma

Where does variability come into play? What can we measure?
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Epigenetics

A modeller’s dream!
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A more accurate picture?

....CCACCGAACGCGCGCGGGAACGGCACGAGCGGGGCGCCG...Genome
DNA sequence

Epigenome

trans-factors
eg. Cfp-1

Transcriptome
RNA-Seq / Pol-II

Zhou et al., Nat Rev Genet, 2011
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The modelling cycle

Informatics will provide the synthesis!
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Epigenetics: what the data looks like

Each row is a tiny fraction of a next-generation sequencing
experiment’s data. Each row ≥1GB of data.
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What the data looks like

after QC, mapping, alignment,

Histone modification data DNA Methylation data
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Obvious problems

Small data, with each data point being very big

Even restricting to regions (e.g. genes), the data is high
dimensional and non-trivial

How can we even determine statistical differences?

What is a suitable probability model for each of these
high-dimensional, non-Gaussian items?

Data associated with different genes may be of intrinsically
different dimensionality. How can I do even basic things like
clustering?

How can we model in the presence of very strong redundancies
(dimensionality reduction)?
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Talk outline

1 Background

2 Shape-based testing for methylation profiles (T. Mayo)

3 Spatial methylation and gene expression (Andreas Kapourani)
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DNA Methylation

Addition of a methyl group to a cytosine

Predominantly occurs in the CpG context

Tightly controlled epigenetic phenomenon

Guido Sanguinetti (University of Edinburgh) Spatial patterns in BS-Seq Krupp 10/16 10 / 32



DNA Methylation - why study it?

DNA methylation has been associated with

Cellular processes: genomic imprinting, cell differentiation,
retrotransposon silencing, gene regulation

Diseases: Cancer, heart disease.

Canonical view: methylation of promoters (CpG islands) silences
gene

As such, epigenetic therapies are being developed which specifically
target methylation

Epigenome-wide association studies (EWAS) incorporating
methylation
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Methylation Data

Bisulfite conversion: unmethylated Cytosine to Uracil

NGS, conversion aware alignment

RRBS: focus on CpG-rich regions
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A look at the data

Data exhibits strong spatial correlations conserved across replicates
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Existing methods

Typical approaches test individual cytosines and aggregate (not
MAGI).

BSmooth

Uses local likelihood smoothing to filter noise

Replicates are aggregated to a single methylation profile

MethylSig & BiSeq

Beta-binomial approach to model variability, at each cytosine

Differ in approach to multiple comparison testing

MAGI

Pre-selects regions and assigns global methylation state via
thresholding

Uses Fisher exact test on binary string
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Existing Methods: Problems

In general:

Require high replication & coverage

Loss of significance due to multiple comparisons

Ignore spatial correlations in the data

Hence, require uninterrupted, large methylation changes to
occur at individual Cs.

Beta-Binomial methods:

Require large number of replicates

Require high coverage at each C in large number of samples

Variability is modelled individually at each cytosine
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Formulate the test question

We wish to test whether the methylation profile in a region is
different between two samples.

Idea: treat data as outcome of a generative process where CpG sites
are randomly assigned reads and methylation state on each read

n observations in data set s (e.g. WT)

X s = {xs1, ..., xsn}

m observations in data set s ′ (e.g. Null),

X s′ = {xs′1 , ..., x
s′

m}

where xs , xs
′

random variables
drawn i.i.d. from probability distributions p and p′.

Can we decide whether p 6= p′?

Guido Sanguinetti (University of Edinburgh) Spatial patterns in BS-Seq Krupp 10/16 16 / 32



Formulate the test question

We wish to test whether the methylation profile in a region is
different between two samples.

Idea: treat data as outcome of a generative process where CpG sites
are randomly assigned reads and methylation state on each read

n observations in data set s (e.g. WT)

X s = {xs1, ..., xsn}

m observations in data set s ′ (e.g. Null),

X s′ = {xs′1 , ..., x
s′

m}

where xs , xs
′

random variables
drawn i.i.d. from probability distributions p and p′.

Can we decide whether p 6= p′?

Guido Sanguinetti (University of Edinburgh) Spatial patterns in BS-Seq Krupp 10/16 16 / 32



Formulate the test question

We wish to test whether the methylation profile in a region is
different between two samples.

Idea: treat data as outcome of a generative process where CpG sites
are randomly assigned reads and methylation state on each read

n observations in data set s (e.g. WT)

X s = {xs1, ..., xsn}

m observations in data set s ′ (e.g. Null),

X s′ = {xs′1 , ..., x
s′

m}

where xs , xs
′

random variables
drawn i.i.d. from probability distributions p and p′.

Can we decide whether p 6= p′?

Guido Sanguinetti (University of Edinburgh) Spatial patterns in BS-Seq Krupp 10/16 16 / 32



MMD: non-parametric testing for distributions

MMD: Kernel-based non-parametric test

recently developed by Gretton et al., 2008, 2012

retains information of any order within the testing procedure.

Maximum Mean Discrepancy (MMD)

Starting point:
Define feature map, which maps the distributions into a high
dimensional reproducing Kernel Hilbert Space (RKHS).

In this space, two distributions are identical
if and only if their kernel mean is identical.

Distance between means is a good quantitative measure for difference
between two distributions.
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MMD Test statistics

Nonlinear kernel function k(xs , xs
′
)→ the mean embedding of a

distribution p (in the RKHS F) contains the information of all
higher-order moments.

The maximum mean discrepancy, (MMD) is the distance
between mean embeddings

MMD[F , p, p′] = supf ∈F(Ex∼p[f (x)]− Ex∼p′[f (x ′)])

Theorem: MMDp,p′ = 0 if and only if p = p′

Finite sample estimates of MMD will be different from zero, but
their distribution can be estimated (by bootstrapping)

MMD can be efficiently computed in terms of Kernel functions

MMD(s,s′) =

[
1

(n)2
k(xs , xs)− 2

n ·m
k(xs , xs

′
) +

1

m2
k(xs

′
, xs

′
)

] 1
2
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Choice of Kernel

Each mapped cytosine is an individual data
point: xj = (Cj ,Methj)

Composite kernel

kfull(xi , xj) = kRBF (xi , xj)kSTR(xi , xj)

kRBF (xi , xj) = exp[−(Ci − Cj)
2/2σ2]

kSTR(xi , xj) = 1 if Methi = Methj , 0 else

σ is modelled from the data as σ2 = x̄2/2 where x̄ is the median
observed distance in the region.
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Handling Coverage

The MMD tests whether samples are drawn from the same
distribution.

The frequency that data is drawn - the coverage - is independent
of the methylation profile.

We adapt the method by subtracting an appropriate ’coverage
only’ metric.

The MMD with an RBF kernel on genomic location only (no
methylation considered)
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Test-statistic

M3D test-statistic
M3D[X ,Y ] = MMD[X ,Y , kfull ]−MMD[X ,Y , kRBF ]

The test statistic over all replicate pairs forms our testing
distribution

For a given region, the mean of the inter-group comparisons is
tested against this distribution

This gives the empirical probability of finding the cross-group
difference in methylation profiles among the replicates
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M3D produces nice histograms

M3D statistic between replicates (left) and between different
conditions (K562 vs H1 cells).
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M3D is robust to low replication/ coverage

M3D test results is robust to low coverage (left) and low replication
(right).
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Spatial methylation patterns

Spatial methylation patterns appear to be strongly reproducible
hence they yield a very powerful test

Do they mean anything?

To answer this question, we need to quantify precisely
methylation patterns of regions

M3D avoided the issue using the kernel trick

Quantifying patterns is tricky as different regions have different
numbers of CpGs
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The BPRM model

We assume the methylation pattern of a region to be determined
by an unobserved methylation function f (x) = Φ

(
g(x)

)
, where

Φ is the probit transform, defined on the whole region (not just
CpGs)

We represent the unconstrained function g(x) = wξ(x) as a
linear combination of fixed basis functions ξj (e.g. RBF)

The actual number of methylated reads at position i is binomial
distributed

ni ∼ Bin (mi , f (xi)) (1)

with mi the coverage at position i .

Optimising the likelihood given by (1) w.r.t. the weights w
associates each region with methylation profile features
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The BPRM model - cartoon

Input Output
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Predicting gene expression

Predicting gene expression from methylation profiles (left) or mean
methylation levels (right). Overall improvement in Pearson r from
0.31 to 0.72.
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Effect of different features

K562 GM12878 H1−hESC
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Model performance across cell lines

BPRM model predictions on different cell lines/ using different
features.
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Conclusions

MMD-based statistics enable more powerful tests than currently
used approaches

MMDiff is complementary to count-based methods: changes
that only alter counts (keeping shape fixed) cannot be captured

MMD is potentially of use in other scenarios where distributions
arise naturally, e.g. methylation or metagenomics

Machine learning can help extract patterns from
high-throughput epigenomic data which may suggest biological
functions/ clarify links between epigenetics and gene regulation
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