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The central dogma
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Where does variability come into play? What can we measure?
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Epigenetics
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A modeller's dream!
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A more accurate picture?
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Zhou et al., Nat Rev Genet, 2011
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The modelling cycle
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Informatics will provide the synthesis!

Guido Sanguinetti (University of Edinburgh) Spatial patterns in BS-Seq Krupp 10/16



Epigenetics: what the data looks like

UCSC Genome Browser on Mouse July 2007 (NCBI37/mm9) Assembly
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Each row is a tiny fraction of a next-generation sequencing
experiment's data. Each row >1GB of data.
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What the data looks like

after QC, mapping, alignment,

Histone modification data DNA Methylation data
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Obvious problems

@ Small data, with each data point being very big
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Obvious problems

@ Small data, with each data point being very big

@ Even restricting to regions (e.g. genes), the data is high
dimensional and non-trivial

@ How can we even determine statistical differences?

@ What is a suitable probability model for each of these
high-dimensional, non-Gaussian items?

@ Data associated with different genes may be of intrinsically
different dimensionality. How can | do even basic things like
clustering?

@ How can we model in the presence of very strong redundancies
(dimensionality reduction)?
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Talk outline

© Shape-based testing for methylation profiles (T. Mayo)
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DNA Methylation
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@ Addition of a methyl group to a cytosine
@ Predominantly occurs in the CpG context

@ Tightly controlled epigenetic phenomenon
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DNA Methylation - why study it?

DNA methylation has been associated with
@ Cellular processes: genomic imprinting, cell differentiation,
retrotransposon silencing, gene regulation
@ Diseases: Cancer, heart disease.
@ Canonical view: methylation of promoters (CpG islands) silences
gene

As such, epigenetic therapies are being developed which specifically
target methylation

Epigenome-wide association studies (EWAS) incorporating
methylation
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Methylation Data
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@ Bisulfite conversion: unmethylated Cytosine to Uracil
@ NGS, conversion aware alignment

@ RRBS: focus on CpG-rich regions
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A look at the data
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Data exhibits strong spatial correlations conserved across replicates
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Existing methods

Typical approaches test individual cytosines and aggregate (not
MAGI).

BSmooth
@ Uses local likelihood smoothing to filter noise
@ Replicates are aggregated to a single methylation profile
MethylSig & BiSeq
@ Beta-binomial approach to model variability, at each cytosine
o Differ in approach to multiple comparison testing

MAGI

@ Pre-selects regions and assigns global methylation state via
thresholding

@ Uses Fisher exact test on binary string
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Existing Methods: Problems

In general:

Require high replication & coverage

@ Loss of significance due to multiple comparisons
@ Ignore spatial correlations in the data
°

Hence, require uninterrupted, large methylation changes to
occur at individual Cs.

Beta-Binomial methods:
@ Require large number of replicates
@ Require high coverage at each C in large number of samples
@ Variability is modelled individually at each cytosine
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Formulate the test question

We wish to test whether the methylation profile in a region is
different between two samples.
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Formulate the test question

We wish to test whether the methylation profile in a region is
different between two samples.

Idea: treat data as outcome of a generative process where CpG sites
are randomly assigned reads and methylation state on each read

@ n observations in data set s (e.g. WT)

XS ={x3,..,x}}

n

@ m observations in data set s’ (e.g. Null),

X ={x5, .., x5}
where x*, x* random variables
drawn i.i.d. from probability distributions p and p'.
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Formulate the test question

We wish to test whether the methylation profile in a region is
different between two samples.

Idea: treat data as outcome of a generative process where CpG sites
are randomly assigned reads and methylation state on each read

@ n observations in data set s (e.g. WT)

XS ={x3,..,x}}

n

@ m observations in data set s’ (e.g. Null),

s’ s’ s’
X® ={x],...,x}
! .
where x°, x° random variables

drawn i.i.d. from probability distributions p and p'.

Can we decide whether p # p'?
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MMD: non-parametric testing for distributions

@ MMD: Kernel-based non-parametric test
@ recently developed by Gretton et al., 2008, 2012

@ retains information of any order within the testing procedure.
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MMD: non-parametric testing for distributions

@ MMD: Kernel-based non-parametric test
@ recently developed by Gretton et al., 2008, 2012

@ retains information of any order within the testing procedure.

Maximum Mean Discrepancy (MMD)

Starting point:
Define feature map, which maps the distributions into a high
dimensional reproducing Kernel Hilbert Space (RKHS).

In this space, two distributions are identical
if and only if their kernel mean is identical.

Distance between means is a good quantitative measure for difference

between two distributions.

v
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MMD Test statistics

o Nonlinear kernel function k(x°,x*')— the mean embedding of a
distribution p (in the RKHS F) contains the information of all
higher-order moments.
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MMD Test statistics

o Nonlinear kernel function k(x°,x*')— the mean embedding of a
distribution p (in the RKHS F) contains the information of all
higher-order moments.

@ The maximum mean discrepancy, (MMD) is the distance
between mean embeddings

MMDIF, p, p'] = suprer(Explf(x)] — Exwp[F(X)])
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MMD Test statistics

o Nonlinear kernel function k(x°,x*')— the mean embedding of a
distribution p (in the RKHS F) contains the information of all
higher-order moments.

@ The maximum mean discrepancy, (MMD) is the distance
between mean embeddings

MMDIF, p, p'] = suprer(Explf(x)] — Exwp[F(X)])

e Theorem: MMDP*" =0 if and only if p = p/

@ Finite sample estimates of MMD will be different from zero, but
their distribution can be estimated (by bootstrapping)

@ MMD can be efficiently computed in terms of Kernel functions

, 1 2 1
MMD®=) = | —— k(x®,x°) — —— k(3 x7) + —k(x7,x7)
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Choice of Kernel

Each mapped cytosine is an individual data ATGGCATTGCAA
int: x; = (C;, Meth;) TGGCATTGCAATTTG
point-x; = &), Meth; AGATGGTATTG

Composite kernel
o kuu(xi,x;) = krer(xi, xj)kstr(Xi, X;)
© krer(xi,x;) = exp[—(C; — G)?/207]
o kstr(x:, x;) = 1 if Meth; = Meth;, 0 else

o is modelled from the data as 02 = x?/2 where X is the median
observed distance in the region.
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Handling Coverage

@ The MMD tests whether samples are drawn from the same
distribution.

@ The frequency that data is drawn - the coverage - is independent
of the methylation profile.

@ We adapt the method by subtracting an appropriate 'coverage
only’ metric.

@ The MMD with an RBF kernel on genomic location only (no
methylation considered)
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Test-statistic

M3D test-statistic

M3D[X, Y] = MMDIX, Y, ke] — MMD[X, Y, kggr]

@ The test statistic over all replicate pairs forms our testing
distribution

e For a given region, the mean of the inter-group comparisons is
tested against this distribution

@ This gives the empirical probability of finding the cross-group
difference in methylation profiles among the replicates
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M3D produces nice histograms

Hist of Test Statistic by CpG Cluster Histogram of Test Statistic by CpG Cluster
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M3D statistic between replicates (left) and between different
conditions (K562 vs H1 cells).
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M3D is robust to low replication/ coverage

5% 50%

M3D test results is robust to low coverage (left) and low replication
(right).
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Talk outline

© Spatial methylation and gene expression (Andreas Kapourani)
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Spatial methylation patterns

@ Spatial methylation patterns appear to be strongly reproducible
hence they yield a very powerful test

@ Do they mean anything?
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Spatial methylation patterns

@ Spatial methylation patterns appear to be strongly reproducible
hence they yield a very powerful test

@ Do they mean anything?

@ To answer this question, we need to quantify precisely
methylation patterns of regions

@ M3D avoided the issue using the kernel trick

@ Quantifying patterns is tricky as different regions have different
numbers of CpGs
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The BPRM model

@ We assume the methylation pattern of a region to be determined
by an unobserved methylation function f(x) = ®(g(x)), where
® is the probit transform, defined on the whole region (not just
CpGs)

@ We represent the unconstrained function g(x) = w¢(x) as a
linear combination of fixed basis functions ¢; (e.g. RBF)

@ The actual number of methylated reads at position / is binomial
distributed
n; ~ Bin (m,-, f(X,)) (1)
with m; the coverage at position i.

@ Optimising the likelihood given by (1) w.r.t. the weights w
associates each region with methylation profile features
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The BPRM model - cartoon
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Predicting gene expression

K562 Mean Methylation

A K562 Methylation Profile

measured expression (log2)
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Predicting gene expression from methylation profiles (left) or mean

methylation levels (right). Overall improvement in Pearson r from
0.31 to 0.72.
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Effect of different features

Model performance across cell lines
K562 GM12878 H1-hESC
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BPRM model predictions on different cell lines/ using different
features.
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Conclusions

@ MMD-based statistics enable more powerful tests than currently
used approaches

o MMDiff is complementary to count-based methods: changes
that only alter counts (keeping shape fixed) cannot be captured

@ MMD is potentially of use in other scenarios where distributions
arise naturally, e.g. methylation or metagenomics

@ Machine learning can help extract patterns from
high-throughput epigenomic data which may suggest biological
functions/ clarify links between epigenetics and gene regulation
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