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Over&500,000&thyroid&nodule&fine&needle&aspiraFon&&&

(FNA)&procedures&were&performed&in&the&US&in&2011.&&

FNA&samples&can&be&challenging&to&interpret&and&produce&

indeterminate&results&in&15%&to&30%&of&cases.&

Guidelines&recommended&that&most&of&these&paFents&undergo&a&&

diagnosFc&thyroid&surgery&to&assess&whether&the&nodules&are&benign&or&

&malignant.&70%Q80%&of&the&Fme,&the&nodules&prove&to&be&benign.&

The&Afirma&Gene&Expression&Classifier&(GEC),&helps&physicians&reduce&the&&

number&of&surgeries&by&preoperaFvely&idenFfying&benign&nodules&&

among&those&that&were&classified&by&cytopathology&as&indeterminate.&
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Introduction to our RUV methods
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The problem 

   High-dimensional (e.g. omic or fMRI) data can be 
affected by unwanted variation.  

   For example, batch effects due to time, space, 
equipment, operators, reagents, sample source, 
sample quality,  environmental conditions,…the 
list goes on…  
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Artifact can overwhelm biology

Gene&expression&data.&Adapted&from&Lazar&C&et#al.##Brief&Bioinform&2013#

!batch!1!
!batch!2!

Sample&principal&

component&scores&

PC2&

PC1&



Some scientific goals sought using  
gene expression microarrays  

Differential Expression  
Classification 
Clustering
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Unwanted&variaFon&can&reduce&precision&and&add&bias&&

(via&confounding),&leading&to&false&posiFves&and&false&&

negaFves,&&poor&classifiers&and&arFficial&clusters.&
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Aim for today 

 To discuss some new ways of
 
•  identifying and removing (i.e. adjusting for) 

unwanted factors, when the goal is 
classification, and

•  telling whether or not it helped.
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“Our” model (brief refs later)

m (10s-1,000s) samples, n (10s of 1,000s) genes, k (≤ m-p) UV factors
      
              Ym×n = Xm×pβp×n + Wm×kαk×n + εm×n      

  where 
  Y is a matrix of gene expression measurents, observed,
  X carries the factors of interest, observed in a training 

set, unobserved in a test set
  β are gene coefficients, unobserved, 
  W carries unwanted variation factors, unobserved, 
  α  are gene coefficients, unobserved,    
  ε are errors, unobserved.

15&



Concrete example

With our Afirma-T example, we could put  xi=-1 if sample i 
is benign, xi = +1 if sample i is malignant.  

The wi for this example could capture batch effects in 
reagents, in chips, processing dates, operators, and other 
things (remember: we’re treating them as unobserved.
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Our model in pictures

yij######=#########xiβj###########+###########wiαj##########+########εij#

The&εij#are&all&(0,#σ
2
j),&uncorrelated#with&each&other&and&all&else.&

We&resist&the&temptaFon&to&make&assumpFons&about&the&{αj}.#



Our goal: classification

That is, we have y  but don’t know X (or W) for our 
test and target set samples. 

Before we get there, we’ll discuss estimating β as we 
would in a training set with known X.
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Our model, 2
      

          Ym×n = Xm×pβp×n + Wm×kαk×n + εm×n      

   Initial goal: to estimate β
   Note: W unobserved, o/w standard linear model 
  “Our” strategy: use factor analysis to estimate W
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Some ways of dealing with these and                
related problems with microarrays

•  Standard linear regression (many)

•  EB linear regression (ComBat, Johnson et al, 2007)

•  Naïve factor analysis (SVD, several)
•  Bayes (Lucas et al, 2006, Stegle et al, 2008)

•  Surrogate Variable Analysis (Leek & Storey, 2007)

•  Mixed model analysis (Kang et al, 2008, Listgarten et al, 
2012)
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Identifiability: we don’t know the 
correlation of W (k=1) with X
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(yIj,y2j#)#=#(βj + αj + ε1j , xβj + wαj + ε2j )

Two&samples&

x1#=#w1#=#1#
x2#=#x,#w2#=w#
Dots&are&genes&
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We might have genes j not affected by X
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(yIj,y2j#)#=#(αj + ε1j , wαj + ε2j ) 



We might have genes j not affected by X
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(yIj,y2j#)#=#(αj + ε1j , wαj + ε2j ) 



We might have genes j not affected by X
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(yIj,y2j#)#=#(αj + ε1j , wαj + ε2j ) 

Nega,ve!controls:&genes&whose&expression&is&not&associated&
with&the&biological&factors&of&interest&embodied&in#X#



“Our” solution: Use control genes

Negative controls: Assume βj = 0.
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“controls” in this context means 
“controls w.r.t. differential expression”

PosiFve&controls:&Assume&&βj#≠#0.#
&

Yc#
αc#

0#
εc#



 
 

Using the negative controls c  
 

                          Yc = Wαc + εc 

Just do a factor analysis on the negative controls!

Examples of negative controls 
•  housekeeping (HK) genes, 
•  spiked-in controls
•  suitable empirical controls 

                      This works!
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Introducing the two-step: RUV-2

1. Do a factor analysis on Yc to estimate W.
2. Then regress Y on X and W^, the estimated W, to get        

an estimate of β adjusted for W^.
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There are many ways to do the factor analysis, but we just use

SVD: Write Yc#=#UΛVT#,##then&put&W^#=#U(k)
##(first#k#columns)&

Issues: choice of k, and can we do better? Yes: RUV-4



Introducing RUV-inv
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β̂ RUV−inv = [Xt (YcYc
t )−1X]−1Xt (YcYc

t )−1Y

This&is&the&generalized&least&squares&esFmator&using&&a&

covariance&matrix&based&on&data&from&the&negaFve&control&

genes&(others&use&all&genes),&but&we&esFmate&SEs&differently.&

We&start&with&RUVQ4&(UCB&Stat&Tech&Rep&820),&and&put&&&&

&k=mN1#&(the&largest&&possible&value&when&p=1).&&We&don’t&&

need&an&SVD,&and&we&find&
&



A microarray experiment with central  
retina tissue from the rd1 mouse: 4 times x 3

Light&blue:&2&months&

Dark&blue:&4&months&

Purple:&6&months&

Red:&&8&months&

&

&
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Principal&component&1&&

Very!severe!!
batch!effects!

rd1#is&a&mouse&model&of&rePniPs#pigmentosa:#loss&of&rod&
photoreceptors,&followed&by&that&of&cone&photoreceptors&



Removing severe batch effects
•  Initially no significantly downregulated retinal genes were 

found between 2 and 8 months (left volcano plot on the 
next slide).

•  Using RUV-inv (right plot), we were able to find several 
significantly down-regulated retinal, even cone-specific 
genes, which were later confirmed. 
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      Standard analysis                      
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   Standard analysis      Analysis with RUVinv
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Are there any questions?
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Classification

training, test and target sets
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What is unwanted variation?
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What is unwanted variation?

•  Variation that has no predictive power
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Hypothetical example: Suppose we want to 
classify tumors into one of two types, A or E.  

Suppose Asians tend to get type A, and Europeans type E.
Is ethnicity “wanted” or “unwanted'’?
What if it is easy to classify by ethnicity, but hard / impossible 
to classify by tissue type per se?
Same question, but now the “unwanted variation” is a lab 
effect – and one lab is in Agra and the other is in Essen.

•  Variation that cannot be assumed to be stationary
•  Redundant variation
It depends on how the classifier will be used, and how similar 
the target set is to the training set.
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The challenge of non-stationarity

In most realistic applications, the new samples to be 
classified will come from a different “batch” than the 
original samples used to build the classifier.

What, if anything, can we do to guard against or 
deal with the possibility that new sources of 
unwanted variation will affect the new samples?

 More comments later.
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An interesting point

The fact that the choice of negative controls depends on 
the purpose of the classifier is obviously important for 
applied work. But it is also interesting on a conceptual level. 

We see that the negative controls may be used not just to 
identify unwanted variation, but, in some sense, to define it. 
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Removing unwanted variation 
from the test (target) set
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Model for the training set data

41&

Ymxn = Xmxpβpxn +Wmxkαkxn +εmxn

AssumpFons&as&before;&here&X&is&known&&



Model for the test and target set

42&

!Y !mxn = !X !mxpβpxn + !W !mxkαkxn + !ε !mxn
&&&&&&&&&&Analogous&assumpFons;&here&&&&&&&&&&is&unobserved.&&

!X

!X

The&shared#α#and&β&(and&p,#k#and&n)&consFtute&the&weak&&
staFonarity&assumpFon.&&Note&that&m&and&&&&&&&&&will&in&&

general&differ.&We&assume#ε#and&&&&&&&are&independent.&
!m

!ε



Goal

To estimate          and          , and subtract off the
 
estimate from Y  and       respectively, to produce

matrices P and        (predictors) for the classification.

P should be ≈ Xβ and       should be ≈         .
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Wα !Wα

!Y

!P

!P !Xβ



How to proceed?

We know* how to remove the unwanted variation from 
Y when X is known: we can use RUV-2, RUV-4 or 
RUV-inv to estimate W  and α, and subtract         .  

How can we estimate and subtract    t     when       is 
not known? 
We will describe two ways. 
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Ŵα̂

!Wα !X

*&We&think&we&know.&There&is&a&catch!&



Method!A,!start!with!!

Since                     ,  

we can estimate         by regressing         on         ,    
and so  

 

This leads to      
           

      

α̂

!Yc = !Wαc + !εc

!W !Yc ' α̂ 'c

!W ≈ !Ycα̂ 'c (α̂cα̂ 'c )
−1.

!P(A) ≈ !Y − !Ycα̂ 'c (α̂cα̂ 'c )
−1α̂.



Digression: some calculations 

Now U = Yc VcD-1, and so analogously, we define   
                        =     VcD-1.   
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!U !W

!U !Yc

Let&UDVc
’#be&the&SVD&of&Yc#.######

#
Note&that&U#≈#W#,&and&is&an&RUVQ2&esFmator&of&W,&and&

that&DVc
’#≈#αc#,#though&it&is&not&the&RUVQ2&esFmator.&

#
&

Then&we&find&that&&&&&&&≈#&&&&&&&.&
&



47&

Method B, start with  

        
            

      

β̂

Define α̂ = (U 'U)−1U '(Y − Xβ̂),
and write !P(B) = !Y − !Uα̂.

We&can&show&that&this&expression&is&quite&insensiFve&to&&

violaFon&of&&the&negaFve&control&gene&assumpFon,&and&&

so&we&can&use&all!genes,&giving&

!P(B) ≈ !Y − !YY '(YY ')−1(Y − Xβ̂).



Comparing and contrasting  
Methods A and Method B

Method A starts with      based onYc , and leads to P(A) .
Method B starts with      , which might, but need not be 
based on Y , and uses   the       ≈        based on      to get 
P(B) .

If we get both      and        from RUV-inv, with the same 
controls, then we find that P(A)  = P(B) . 

 But if things are done differently, they will diverge. 
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α̂

β̂
!U !W !Y
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Advantage of P(B)

If we don’t need to worry about control genes, we can use 
all genes. (We may still need control genes to get       in the 
first place.) If we do take all genes, we find that
  
          

Using all genes gives us a richer estimate of W. If there are 
unwanted (e.g. biological) factors that affect a subset of 
genes, but not the negative control genes, these will not be 
adjusted for if we limit ourselves to control genes. But by 
using all genes as above, we can adjust for these factors.  

49&

!P ≈ !Y − !YY '(YY ')−1(Y − Xβ̂).

β̂



Cleaning up the training set
P(B) is our test/target set prediction data. 

What is the analogus for the training set data? 

Do the same thing with our training data. We find that

simplifies to         ! Way too optimistic to be a
 realistic training set. We need another way.
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P ≈ Y −YY '(YY ')−1(Y − Xβ̂).

Xβ̂



Cross Normalization
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Pi =Yi −YiY '−i (Y−iY '−i )
−1(Y−i − X−iβ̂

(−i) ),
where
•Yi = the ith row of Y
•Y−i =Y with the ith row removed
• X−i = X with the ith row removed

• β̂ (−i) = the estimate of β using X−i and Y−i
Now&the&Pi#,#i=1,…m,&are&“not&too&clean”.&



How does it work? Simulations
SimulaFons&have&been&carried&out&to&compare&

Methods&A&and&B,&using&“good”,&“bad”&and&“too&good”&

controls,&X&and&W&uncorrelated&or&correlated,&β&and&α&
uncorrelated&or&correlated,&staFonarity&or&not&(column&

of&Wb&not&in&Wa),&&using&RUVQ2,&RUVQ4&(with&varying&k)&

and&RUVQinv&for&esFmaFng&β&and&α,&and&housekeeping&
(HK)&or&all&genes&as&&controls.&&

Overall,&Methods&A&and&B&using&RUVQinv&are&preky&

similar,&and&best,&but&when&the&going&gets&tough,&B&

wins.&&Not&surprisingly,&full&outperforms&HK&in&sims.&

&

&

&

&

&

&

&

&

Now&for&a&real&example.&
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Choice of classifier
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Removing Unwanted Variation makes it 
possible to use “simple” classifiers

Here “simple” includes linear discriminant analysis 
(LDA) and diagonal linear discriminant analysis (ΔLDA). 

Below we compare them to support vector machines 
(SVM) and the elastic net logistic regression package, 
glmnet  (not so simple classifiers).

We also use these classifiers with the only other 
method which we know deals with unwanted variation: 
fSVA (Leek et al, 2012).
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Why we might be able to stick to 
“simple” classifiers?

Suppose that β and α are fixed, and that X, W, ε and their ~ 

counterparts are all random, and mutually independent. 
Assume that W and       are iid N(0,Λ), and that X and        
are single column matrices with entries -1 or +1 with 
probability π . Define Σ to be the n×n diagonal matrix  
whose diagonal entries are the variances σj

2. For this 
illustration, we assume strong stationarity: that the pairs
                 and               are iid. Then we find that    

Yi | {Xi=-1} ~ N(-β,α’Λα+Σ) and Yi | {Xi=+1} ~ N(β,α’Λα+Σ),  
 and Pi | {Xi=-1}≈ ~ N(-β,Σ), and Pi | {Xi=+1} ≈ ~ N(β,Σ),  

 and the same for      .  Now Σ  is diagonal.  Discuss! 55&

!W !X

(Xi,Wi ) ( !Xi. !Wi )

!Y



Example
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Gender differences in the brain 
(Vawter et al, Neuropsychopharmacology 2004)

•  5 men, 5 women
•  3 brain regions (AnCing, DLPFC, Cb)
•  Each sample done in 3 labs
•  2 Affymetrix chip types:  HGU95a, HGU95av2
•  There should be (5+5) × 3 × 3 = 90 arrays, but 6 

are missing, so there are just 84.

   We’ll focus on gender, i.e. sex. 
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Ex: gender differences in the brain 
(Vawter et al, Neuropsychopharmacology 2004)

•  5 men, 5 women
•  3 brain regions (AnCing, DLPFC, Cb)
•  Each sample done in 3 labs
•  2 Affymetrix chip types:  HGU95a, HGU95av2
•  There should be (5+5) × 3 × 3 = 90 arrays, but 6 

are missing, so there are just 84.

   We’ll focus on gender, i.e. sex. 
   There is lots of UV!
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(5� + 5�) x 3 regions x 3 labs on chips v1, v2 
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84&Affy&chips.&

PCs&based&on&&

all&genes.&No&&

preprocessing&



Same plot with gender indicated
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Same plot with brain regions indicated
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Unadjusted

Johann Gagnon-Bartsch Global Adjustments



Ex: gender differences in the brain, 2

•  12,685 probe sets
•  799 housekeeping (HK) genes, 33 spike-in negative 

controls
    We remove genes on the Y chromosome, XIST and    

DDX3X, for otherwise, predicting gender is too easy.
   
 Training set 60. Validation set 24. Results are averages 

over 100 random training/validation splits. In each 
case*, the classifiers are based on the top 10 ranked 
differentially expressed genes in the training set. 
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Estimated accuracy rates 
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Avgs!of!100!random! SVM! LDA! ΔLDA! Glmnet*!

Unadjusted& .57& .58& .57& .71&

fSVA&(Leek&et#al,&2012)&&& .64& .64& .64& .72&

RUVQinv&only& .67& .68& .64& &Q&

RUVBinv&(HK)& .87& .85& .88& .83&

RUVBinv&(full)& .85& .83& .85& .84&

*α&&=&1,&own&variable&selecFon&

ΔLDA&=&Δiagonal&LDA&



Making this work for  
personalized medicine
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Here are a couple of thoughts  

•  Veracyte’s Afirma-T removes unwanted variation    
by normalizing a set of reference genes to a fixed 
distribution, a common strategy. This aspect of their 
algorithm, along with all others, is locked down as a 
Food & Drug Administration requirement. 

•  RUV-B begins with an estimate of β, and takes it 
from there. If this is locked down, then the whole 
process can be locked down. 

•  If the “truth” associated with some target samples 
becomes known, the estimate of β can be 
improved, but this would violate the locking.
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