Removing Unwanted Variation in
Machine Learning for Personalized Medicine

with Johann Gagnon-Bartsch and Laurent Jacob

European. Marie Curie Network for MLPM. Barcelona, 20 May 2016

Photo: Bernard Gagnon




Apology, Motivation and
Declaration of -Conflict of Interest

SBA73 from Sabadell, Catalunya



WS

Thyroid FNA Analysis
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Over 500,000 thyroid nodule fine needle aspiration
(FNA) procedures were performed in the US in 2011.
FNA samples can be challenging to interpret and produce
indeterminate results in 15% to 30% of cases.

VN'lrma.

Guidelines recommended that most of these patients undergo a
diagnostic thyroid surgery to assess whether the nodules are benign or
malignant. 70%-80% of the time, the nodules prove to be benign.

The Afirma Gene Expression Classifier (GEC), helps physicians reduce the
number of surgeries by preoperatively identifying benign nodules
among those that were classified by cytopathology as indeterminate.
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Over 500,000 thyroid nodule fine needle aspiration
(FNA) procedures were performed in the US in 2011.
FNA samples can be challenging to interpret and produce
indeterminate results in 15% to 30% of cases.

VN'lrma.

I’m on the Scientific Advisory Board of Veracyte
and receive money from them.

The Afirma Gene Expression Classifier (GEC), helps physicians reduce the
# of avoidable surgeries by preoperatively identifying benign nodules
among those that were classified by cytopathology as indeterminate.




Introduction'to our' RUVimethods




The problem

High-dimensional (e.g. omic or fMRI) data can be
affected by unwanted variation.

For example, batch effects due to time, space,
equipment, operators, reagents, sample source,
sample quality, environmental conditions,...the
list goes on...




Artifact can overwhelm biology
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Gene expression data. Adapted from Lazar C et al. Brief Bioinform 2013




Some scientific goals sought using
gene expression microarrays

Differential Expression
Classification

Unwanted variation can reduce precision and add bias
(via confounding), leading to false positives and false
negatives, poor classifiers and




Aim for today

To discuss some new ways of

* identifying and removing (i.e. adjusting for)

unwanted factors, when the goal is
classification, and

* telling whether or not it helped.




“Our” model (prief refs 1ater)

m (10s-1,000s) samples, n (10s of 1,000s) genes, k (< m-p) UV factors

men = mprBpxn + + &
where
Y'is a matrix of gene expression measurents, observed,

X carries the factors of interest, observed in a training
set, unobserved in a test set

(3 are gene coefficients, unobserved,
carries unwanted variation factors, unobserved,
are gene coefficients, unobserved,

€ are errors, unobserved.




Concrete example

With our Afirma-T example, we could put x=-7if sample /
IS benign, x; = +1 if sample /is malignant.

The w;for this example could capture batch effects in
reagents, in chips, processing dates, operators, and other
things (remember: we’re treating them as unobserved.




Our model in pictures
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The €, are all (0, azj), uncorrelated with each other and all else.
We resist the temptation to make assumptions about the {a;/.




Our goal: classification

That is, we have y but don’t know X (or \//) for our
test and target set samples.

Before we get there, we’ll discuss estimating 5 as we
would in a training set with known X.




Our model, 2

men = mprBpxn +

Initial goal: to estimate 3
Note: , 0/w standard linear model
“Our” strategy: use factor analysis to estimate




Some ways of dealing with these and
related problems with microarrays

Standard linear regression (many)

EB linear regression (comBat, Johnson et al, 2007)
Naive factor analysis (svb, several)

Bayes (Lucas et al, 2006, Stegle et al, 2008)

Surrogate Variable Analysis (Leek & Storey, 2007)

Mixed model analysis (Kang et al, 2008, Listgarten et al,
2012)




Identifiability: we don’t know the
correlation of // (k=1) with

Two samples
X, =w;=1

X, =X, W, =W
Dots are genes




We might have genes | not affected by X

Sample 1

(y//y2)=(a+81 ’ 4o +82)




We might have genes | not affected by X

Sample 1

(y//y2)=(a+81 ’ 4o +82)




We might have genes | not affected by X

Negative controls: genes whose expression is not associated
with the biological factors of interest embodied in X

Sample 1

(y//yz)z(a+81 ’ 4o +82)



“Our” solution: Use control genes

controls: Assume S, = 0.

Positive controls: Assume f3;# 0.

“controls” in this context means
“controls w.r.t. differential expression”




Using the controls ¢

Y.=Wa, + ¢,

Just do a factor analysis on the controls!

Examples of controls
* housekeeping (HK) genes,
 spiked-in controls
 suitable empirical controls

This works!




Introducing the two-step: RUV-2

1. Do a factor analysis on Y, to estimate W.

2. Then regress Yon Xand W’ the estimated W, to get
an estimate of B adjusted for W".

There are many ways to do the factor analysis, but we just use

SVD: Write Y.= UAVT, then put W" = U (first k columns)

Issues: choice of k, and can we do better? Yes: RUV-4




Introducing RUV-inv

We start with RUV-4 (UCB Stat Tech Rep 820), and put
k=m-1 (the largest possible value when p=1). We don’t
need an SVD, and we find

/;)RUV—inv — [Xl‘ ()/C)/Cl‘ )—1X]—1xl‘ ()/C)/Ct )—1Y

This is the generalized least squares estimator using a
covariance matrix based on data from the
genes (others use all genes), but we estimate SEs differently.




A microarray experiment with central
retina tissue from the rd7 mouse: 4 times x 3

rd1 is a mouse model of retinitis pigmentosa: loss of rod
photoreceptors, followed by that of cone photoreceptors
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Light blue: 2 months
Dark blue: 4 months

Purple: 6 months
Red: 8 months

Very severe
batch effects
Ideally we would have

seen 4 tight groups of
3¢, ¢ ¢and° resp.




Removing severe batch effects

* Initially no significantly downregulated retinal genes were
found between 2 and 8 months (left volcano plot on the

next slide).

« Using RUV-inv (right plot), we were able to find several
significantly down-regulated retinal, even cone-specific
genes, which were later confirmed.
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Standard analysis  Analysis with RUVinv

Green dots: genes
expressed in the retina
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Are there any questions?




Classification

training, test and target sets







What IS unwanted variation?
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Hypothetical example: Suppose we want to
classify tumors into one of two types, A or E.

Suppose Asians tend to get type A, and Europeans type E.
Is ethnicity “wanted” or “unwanted”?

What if it is easy to classify by ethnicity, but hard / impossible
to classity by tissue type per se?

Same question, but now the “unwanted variation” is a lab
effect — and one lab is in Agra and the other is in Essen.

« Variation that cannot be assumed to be stationary

« Redundant variation

It depends on how the classifier will be used, and how similar
the target set is to the training set.




The challenge of non-stationarity

In most realistic applications, the new samples to be
classified will come from a different “batch” than the

original samples used to build the classifier.

What, if anything, can we do to guard against or
deal with the possibility that new sources of
unwanted variation will affect the new samples?

More comments later.




An interesting point

The fact that the choice of depends on
the purpose of the classifier is obviously important for
applied work. But it is also interesting on a conceptual level.

We see that the may be used not just to
identify unwanted variation, but, in some sense, to define it.




Removing unwanted variation
from the test (target) set




Model for the training set data

Ym

X

mxp /3 pxn

+ mek akxn + gmxn

n

Assumptions as before; here X is known




Model for the test and target set

~S

Y = X"Xpﬁpxn T Wr’hxkakxn T&;

mxn m mxn

Analogous assumptions; here is unobserved.

The shared o and B (and p, k and n) constitute the weak
stationarity assumption. Note that m and will in
general differ. We assume € and g are independent.




Goal

To estimate and Ve , and subtract off the

estimate from Y and respectively, to produce

matrices P and (predictors) for the classification.

P should be = X3 and Jg should be = .




How to proceed?

We know™* how to remove the unwanted variation from
Y when Xis known: we can use RUV-2, RUV-4 or
RUV-inv to estimate W and a, and subtract .

How can we estimate and subtract when IS
not known?

We will describe two ways.

* We think we know. There is a catch!




Method A, start with

we can estimate by regressing on ,

and so




Digression: some calculations

Let UDV_ be the SVD of Y..

Note that U= W, and is an RUV-2 estimator of W, and
that DV = a, though it is not the RUV-2 estimator.

Now U = Y, V_.D', and so analogously, we define

= VCD".

Then we find that z :




Method B, start with

Definea=U'U)"'U(Y —ng’),

. ~(B ~ A
and write P =Y -UaqQ.
We can show that this expression is quite insensitive to

violation of the negative control gene assumption, and
so we can use all genes, giving

P® <Y -YY'(YY')''(Y - XB).




Comparing and contrasting
Methods A and Method B

Method A starts with [¢§ based onY,, and leads to P4 .
Method B starts W|th , which might, but need not be

based on Y, and uses the . . based on . to get
P® .

If we get both [¢4 and from RUV-inv, with the same
controls, then we find that PA) = P®B),

But if things are done differently, they will diverge.




Advantage of P®

If we don’t need to worry about control genes, we can use
all genes. (We may still need control genes to get /;r in the
first place.) If we do take all genes, we find that

P=Y-YY' (YY) (Y - XP).

Using all genes gives us a richer estimate of W. If there are
unwanted (e.g. biological) factors that affect a subset of
genes, but not the negative control genes, these will not be
adjusted for if we limit ourselves to control genes. But by
using all genes as above, we can adjust for these factors.




Cleaning up the training set

P®)is our test/target set prediction data.
What is the analogus for the training set data?

Do the same thing with our training data. We find that

P=Y-YY' (YY) (Y - XP).

simplifies to | Way too optimistic to be a
realistic training set. We need another way.




Cross Normalization

P=Y-YY' (Y.Y' )'(Y,-X ),
where

°Y =theithrowot Y

* Y . =Y with the ith row removed

* X_. = X with the ith row removed

. [3’(‘” = the estimate of f using X_ and Y

Now the P, i=1,...m, are “not too clean”.




How does it work? Simulations

Simulations have been carried out to compare
Methods A and B, using “good”, “bad” and “too good”
controls, X and W uncorrelated or correlated, B and o
uncorrelated or correlated, stationarity or not (column
of W, notin W,), using RUV-2, RUV-4 (with varying k)
and RUV-inv for estimating B and a, and housekeeping
(HK) or all genes as controls.

Overall, Methods A and B using RUV-inv are pretty
similar, and best, but when the going gets tough, B
wins. Not surprisingly, full outperforms HK in sims.







Removing Unwanted Variation makes it
possible to use “simple” classifiers

Here “simple” includes linear discriminant analysis
(LDA) and diagonal linear discriminant analysis (ALDA).

Below we compare them to support vector machines
(SVM) and the elastic net logistic regression package,
glmnet (not so simple classifiers).

We also use these classifiers with the only other
method which we know deals with unwanted variation:

fSVA (Leek et al, 2012).




Why we might be able to stick to
“simple” classifiers?

Suppose that 8 and a are fixed, and that X, W, € and their ~
counterparts are all random, and mutually independent.
Assume that W and are iid N(0,A), and that X and
are single column matrices with entries -7 or +7 with
probability 7. Define 2 to be the nxn diagonal matrix
whose diagonal entries are the variances of. For this
llustration, we assume strong stationarity: that the pairs

O NIA] and [OMUA] are iid. Then we find that

Y.l {X;=-1} ~ N(-B,a’Aa+Z) and Y| {X=+1} ~ N(B,a’Aa+5),
and P,/ {X=-1)= ~ N(-B,%), and P, {X=+1} =~ ~ N(B,5),

and the same for pg. Now 2 is diagonal. Discuss!







Gender differences in the brain
(Vawter et al, Neuropsychopharmacology 2004)

5 men, 5 women

3 brain regions (AnCing, DLPFC, Cb)

Each sample done in 3 labs

2 Affymetrix chip types: HGU95a, HGU95av2

There should be (5+5) x 3 x 3 =90 arrays, but 6
are missing, so there are just 84.

We'll focus on gender, i.e. sex.




Ex: gender differences in the brain
(Vawter et al, Neuropsychopharmacology 2004)

5 men, 5 women

3 brain regions (AnCing, DLPFC, Cb)

Each sample done in 3 labs

2 Affymetrix chip types: HGU95a, HGU95av2

There should be (5+5) x 3 x 3 =90 arrays, but 6
are missing, so there are just 84.

We'll focus on gender, i.e. sex.
There is !




(52 +509") x 3 regions x 3 labs on chips v1, v2

84 Affy chips. Shape = lab

PCs based on
all genes. No
preprocessing
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Same plot with gender




Same plot with brain regions indicate
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Ex: gender differences in the brain, 2

12,685 probe sets

799 housekeeping (HK) genes, 33 spike-in
controls

We remove genes on the Y chromosome, XIST and
DDX3X, for otherwise, predicting gender is too easy.

Training set 60. Validation set 24. Results are averages
over 100 random training/validation splits. In each
case”, the classifiers are based on the top 10 ranked
differentially expressed genes in the training set.

62




Estimated accuracy rates

Avgs of 100 random SVM LDA ALDA GImnet*

Unadjusted .57 58 .57 71
fSVA (Leek et al, 2012) : 64 .64 72
RUV-inv only : .68 .64 -

RUVBIinv (HK) . 85 .88 .83

RUVBinv (full) . 83 .85 .84

*a =1, own variable selection
ALDA = Aiagonal LDA 63




Making this work for
personalized medicine




Here are a couple of thoughts

« Veracyte’s Afirma-T removes unwanted variation
by normalizing a set of reference genes to a fixed
distribution, a common strategy. This aspect of their
algorithm, along with all others, is locked down as a
Food & Drug Administration requirement.

RUV-B begins with an estimate of 8, and takes it
from there. If this is locked down, then the whole
process can be locked down.

If the “truth” associated with some target samples
becomes known, the estimate of G can be
iImproved, but this would violate the locking.




Removing Unwanted Variation

Exploiting Negative Controls for High Dimensional Data
Analysis

Department of Statistics,

Johann A. Gagnon-Bartsch| yniversity of Michigan
Laurent Jacob |Laboratoire de Biometrie et Biologie Evolutive

Terence P. Speed Université Lyon 1,CNRS,INRA, France

10/12 written book, to be completed in the next few months, CUP-IMS monograph
This lecture was part of chapter 11.




