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Exploring the molecular and quantitative
mechanisms that underlie cell signaling and
contribute to human disease
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Quantitative information in protein-protein interaction (PPI)
networks

Qualitative PPl networks Quantitative PPl networks
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Considering protein abundances and affinities/
kinetic constants



I. Kinetic perturbations and network topology

The effect of affinities, kinetic constants and
network topology in PPI networks

Feedbacks

Kinetic -
perturbations koffT Kon koffT Kon X

Kiel & Serrano, Science Signal, 2009



I. Kinetic perturbations and network topology

Epidermal growth factor (EGF) activates the RAS-RAF-MEK-

ERK pathway

PLAMA MEMBRANE

T

h

—
q Exocyst complax
E=rrm

=

e e
-@-/$\.
i WIN| B
=) v
/.4/

~
~
~

A
T LIMKA
< R 4
s, o v

~ ‘\

NUCLEUS

C] Tyr-kinase Receptor - Phosphatase - Ser-Thr kinase - Transcripfion facior
[:] Adaptor protein [:] scaffold D Tyr kinase C] Lipid kinase
- Small GTFase D GEF for small GTPase - GAP for small GTPase D others




I. Kinetic perturbations and network topology

Different network ‘wiring’ /feedbacks causes the different
behaVIOur HEK293 RK13
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. Kinetic perturbations and network topology

A simple computer model of ERK activation in HEK293 and

RK13 cells
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» Good agreement of experiment and model predictions
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I. Kinetic perturbations and network topology

Model predictions: different cell type-specific wiring results in
different responses to mutations with affinity perturbations
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Interaction competition

A means to redirect signaling flows?

Another mechanism by which hubs de-

code different inputs is exemplified in a
CELL BIOLOGY study by Kiel ef al. (7). The authors showed
that competition am ins bi
2013: Signaling Breakthroughs of the Year " c» govem how cells produce differe
responses to the activation of the same recep-
tor. For proteins with a similar affinity for a



II. Protein abundances and competition

The effect of protein abundance
perturbations and interaction competition in
PPI networks

Mutually exclusive interface
interaction, XOR

-




How could interaction competition and protein concentration
affect downstream signaling?

Signaling complexes: > 300 partners
for one protein??

Some proteins will use similar binding
surfaces for interaction with other
molecules: ‘mutually exclusive
interactions’/ ‘XOR’

RBD
Ras

RasGAP

RasGEFN

€% Y | RasGEF



How could interaction competition and protein concentration
affect downstream signaling?

Signaling complexes: > 300 partners In a simple world: ‘ . ReD
for one protein?? i ‘\\ F | ruscse
P & concentration and ,.4&%2
ko, will determine the » .ﬁ‘:’wﬁ
signaling output 'i‘*ﬁ RasGEF

RAS

kp~1 pM O kp~100 nM

kp~3 uM ‘

kp~1 uM

Pathway 1
Pathway 5

Changes in concentration (ie mutations at
promoters, enhancers etc..) could have an effect

in signalling

Pathway 3



II. Protein abundances and competition

A bioinformatics tool to distinguish mutually exclusive from
compatible interactions in large-scale PPI

.2 A B c B
é z2 ) 22 7:‘ 4 tructural templates
si2| Abgde Wi EE
5 2l @ A O A
.3 5 XN
E 5 = A j o 'z'\‘ Van der Waals
BEg| %‘g\ 7. ==
: SAPIN (structural analysis of
Compatible (‘AND’ o . : ‘ ;
P ( ) protein interaction networks) Exclusive (‘XOR)

webserver

http://sapin.crg.es/

g |
el

Yang et al, Bioinformatics, 2012



[ll. Quantitative experimental methods: protein abundances and interactions

Experimental methods to quantify protein
abundances, affinities, and kinetic constants

kO,/
koff

[cellular
abundance]




[ll. Quantitative experimental methods: protein abundances and interactions

Why proteomics in times of deep RNA sequencing?

0 mRNA does not translatel:1 into protein; keywords:
() translation efficiency,
(i) mRNA stability,
(ii) protein stability,

U Posttranslational modification (PTMs) of proteins, e.g. phosphorylation

Two main aims: IDENTIFICATION and QUANTIFICATION

Two main techniques: MASS SPECTROMETRY and ANTIBODY-BASED



[ll. Quantitative experimental methods: protein abundances and interactions

High complexity of the proteome

| exond \ASY Gene

l Transcription
Transcript

/ \Altermtive splicing

exoni|exon2|exon3 exoni |exon2|exond mMRNAs

l Translation

(Posttranslational
medification not shown) %

b
modification
wr G/ | e

%—Ub > Proteins
Glycosylation Lipidation

%—p P_% _'P_%—P )

Phosphorylation  Phosphorylation  Phosphorylation

~
Posttranslational

Peng and Gygi, JMS, 2001

30,000 coding genes per cell

Alt.splicing: 2-3 x 30,000
= 90,000 proteins

Post-translational modifications
> 10 x 90,000
= 900,000 proteins
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High dynamic range of the proteome
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[ll. Quantitative experimental methods: protein abundances and interactions

Protein identification by mass spectrometry

. . MS2
Dissociation _
Peptide into Peptide
separation fragments matching
lonization |
Enzymatic % . ’ Protein
cleavage Al ‘ I matching
MS1 - ' '
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e ; 2 g
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Proteins  Peptides Peptide separation Precursor ion spectrum Fragment ion spectrum  Peptides Proteins

U Address problem of cellular complexity by fractionation, e.g. liquid chtromatography

U Address problem of cellular dynamic range by better and better (and better...) mass
spectrometers...

Ahrens et al, 2010



[ll. Quantitative experimental methods: protein abundances and interactions

Human deep proteome mapping

Molecular Systems Biology 7; Article number 549; doi:10.1038/msb.2011.82 molecular ° R . Ae berSOId Iab
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REPORT ~10,000 proteins quantified

The quantitative proteome of a human cell line

Beck et al, MSB, 2011
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Deep proteome and transcriptome mapping of a human

cancer cell line
« M Mann lab

Nagarjuna Nagaraj', Jacek R Wisniewski', Tamar Geiger', Juergen Cox', Martin Kircher?, Janet Kelso?, Svante Paabo” and Matthias Mann'* . ‘g
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3 Department for Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany and 2 Department of Evolutionary Genetics,
MaxPlatulnsMelorE Anthropology, Leipzig, Germany
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[ll. Quantitative experimental methods: protein abundances and interactions

Human deep proteome mapping: where are we now? Complete?

ARTICLE 2014 Pandey lab

d0i-10.1038/nature 13302

A draft map of the human proteome
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ARTICLE 2014 Kuster lab

Mass-spectrometry-based draft of the
human proteome

Mathias Wilhelm" ¢, Judith Schlcgl™*, Hannes Hahne', Amin Moghaddas Gholami', Marcus Licberenz’, Mikhail M. Savitski’,
Emanuel Z . Lars Butzmann®, Siegfried Gessulat®, ‘Harald Marx', Toby Mathieson”, Simone Lemeer', Karsten Schnatbaum®,
UIf Reimer”, Holger Wenschuh', Martin Mollenhauer®, Julia Slotta-Huspenina®, Joos-Hendrik Bocse?, Marcus Bantscheff,
Anja Gerstmair®, Franz Faerber® & Bernhard Kuster'®

$0i:10.1038/nature 13319

Many proteins are identified with peptides belonging to more than one protein (e.g. isoforms)

Sample

heart
liver
ovary
testis
brain

Gene

Adult frontal cortex
Adult spinal cord

Adult retina
Adult adrenal gland

Adult heart
Adult liver

Adult ovary
Adult testis
Adult lung

Adult gallbladder
Adult pancreas
Adult kidney
Adult esophagus
Adult colon

Fetal
Fetal
Fetal
Fetal
Fetal

Ezkurdia et al, J Proteome Res, 2014

Adult rectum

Adult urinary bladder
Adult prostate

Placenta
Bcells

NK cells
Monocytes
HE N EE BEE e

CD4+ T cells
CD8+ T cells



[ll. Quantitative experimental methods: protein abundances and interactions

Antibody-based proteomics: only semi-quantitative abundances

* Tisue-based map o the human HUMAN PROTEIN ATLAS

» 44 major tissues and organs in the ABoUrE TP
human body
= 24,028 antibodies corresponding to 0o : wi| A Tissue-Based Map
16,975 protein-encoding genes & QOMmMO O . of the Human Proteome
“ 0 O Bl O e vy et tosan ity feses

methods combined with transcriplomics analysis across ol

a o o | ® 0 mojor tissues and organs of the human body. A large number
' of ksts can be accessed with direct fnks to gene-speciic
images of the corresponding proteins in the different tissves
900 o
& =
A = Read mor e

SEARCH ?»

2

e.g. Insulin. PGR, CD36

Version: 13
Allas updated: 2014-11-06

Transcriptome analysis based on
213 tissue and cel ine samples
Proteome analysis based on

W RNA and protein data
B Only protein data

24028 antibodies targeting
16975 unique proteins

Uhlen et al, Science, 2015



[ll. Quantitative experimental methods: protein abundances and interactions

Quantitative \WWestern blotting
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Protein standards: expression, purification

Summary statistic for quantitative Western
and quantification

blotting of 198 ErbB-related proteins
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- | . | |
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:: ;i ‘:: ,:;_" e ::!'j;!" . A Eg: g. §iH Proteln famlly
e L :i “® iw o e L |--gN W= . detected
e -~ “ 1. - | = - Lol 'Po "M Bad antibody (5.5%)
_ LN | Mt | LG e (13.6%)

G021_CREB1 (36.7kDa) | G022 CRK (33.8kDa) | G038_EPS15(83.7kDa) | GO44_GAB1 (80 kDa)
C B P C H Plgc H P|C H P

Protein detected

'-lq ig ":“5_- o w_ G TR o P {omer quelityLioh
i ‘-: = g : - = 5 | o Protein detected (8.1%)
A ”a‘ " 8 I : B ' = (25.2%)

Kiel et al, J Prot Res, 2014



[ll. Quantitative experimental methods: protein abundances and interactions

Combining different quantitative approaches to quantify 198

proteins in the ErbB signaling pathway

Cell lysate
Western FACS
*\é’ [Cdc42]
S5 el

Beads with
known surface

Protein standards binding capacity

Cell lysate

Retention time

AQUA peptides

Cell lysate

J

Fractionation

VEUEEPURLY

Retention time

AQUA peptides

Quantitative Western blotting
and quantitative FACS

No antibody
(19.7%)

Not detected
(28.3%)

Protein family
detected

Bad antibody (5.5%)

(13.6%)

Protein detected
(lower quality blot)
Protein detected (8.1%)

(25.2%)

Protein detected

Targeted mass sgectrometry
(MS)l
Protein and
family detected
(6.1%) No SRM assay
(2.5%)

(58.1%)

Not detected
(25.3%)

Protein family
detected
(8.1%)

Fractionation + shot-gun mass

spectron= ==~ Y

Protein [<3 peptides]
and family [<3 peptides]
detected

(7.6%)

Protein and family

[<3 peptides]
detected
(16.7%)

Protein and
family detected
(11.1%)
Not detected
(21.7%)

Protein family
detected
[<3 peptides]
(3.5 %)

\ﬁ“‘l——- Protein family
: / detected
(2.5 %)

Protein detected

[=3 peptides]
Protein detected (10.1%)
[<3 peptides] and
family

(6.1%)

Protein detected
(20.7%)

= SRM has a higher sensitivity compared to quantitative western blotting (but some proteins are only detected by Western

blotting)

= Problem with isoforms and protein families: as a consequence of frequent gene duplication events in mammals, often similar
proteins (e.g. AKT1 and AKT2) cannot be distinguished using the peptides detected by MS. > they can only be assigned to a

protein group/ family
Kiel et al, J Prot Res, 2014



[ll. Quantitative experimental methods: protein abundances and interactions

Measuring protein interactions in vivo and in vitro

The challenge:

= most in vivo techniques are high-throughput, but do not provide affinities (only
qualitative binding detection)

» in vitro techniques can provide affinities and kinetic constants, but are not high-
throughput methods

In vivo In vitro

Identification
TAP. Kinetics, affinity

Y2H protein arrays
protein /
Cellular localization complement ' Solid-phase

—— detection
FRET

Structure and dynamics

FRET o
BRET Solid-phase D

g S Single-molecule |\ detection

Biological significance detecion

Mechanistics

Current Opinion in Structural Biology
Piehler, Curr Opin Struct Biol, 2005



[ll. Quantitative experimental methods: protein abundances and interactions

Measuring protein affinities in vitro requires the expression and
purification of proteins (e.g. using bacteria)

Example: Bacterial expressed and purified

Ras protein mutants and interactors

Ras + GST

121G, Q25

wit
D38N
Y40F
E37L
121G
136Y
Q25A
Q25F
136F
M67A
E37R
E37M
E63K
136M
E31Q
PLCe
Raf
Ral
mMNORE

kDa
260

160

110 —
80 =——

CECEPRNE WYV

60 —

i

T T
[
L
I
g

£

50 =—

40 —

30 — -

et .BP W Ve uw
20 — -
-
-

f (¢ Tt 8 N
_
-

. : ‘”o

\ )\ J
Y !

GST

Ras WT and mutant Effector RA an
RBD domains
Ras
PLCe
RASSF
RalGDS

PI3K
Raf

Large proteins are often not soluble: expression
and purification of protein domains

|:| Domain interacting with Ras

RIN2 e[

RIN3 s [ omns|

RASIP1 —E—E—

PLCE et | R L e R
RalGDS =\

ROLT ot ity [

RGL2 o iy | ] -

RASSF1 —e—[is]

RASSFS i [iasws] -

PIK3CG [ ]| s it rrtione



[ll. Quantitative experimental methods: protein abundances and interactions

Two main methods to measure affinities and kinetic constants

Microscale thermophoresis

c
4 m 25 E E

D e

|
= —E

™ ™ iy ) T ™y
0 ) 2 30 40 10 10° o001 01 1 10

609?;“ “:ec?“ﬂ 60.?&““?“ . &0 H,0
9;2 A & | N 3% Binding § 3 1A r} s #® Reoriented H,0
> 3 ] e =T - \
LT - e T E L (Ao
s lJJ {‘“ < “/:“; I 4 (T3 ! "g‘;"?
$ 6‘ b" bﬂ "? $ ‘.N - %;. "9
Amine-covalent Ras WT and Mut Fluorescence signal (depends on
I(:;llgzlrlgghz?e?s (serial dilutions) charge, size and hydration shell

» Provides only the affinity in
equilibrium (K4 value), but not

kinetic constants [AB]

[A] x [B]

Surface plasmon resonance

()

HEns0r

surface analyte
binding
molecule Optical method to measure
the refractive index near a
) example sensorgram sensor Surface
e
:E
3
=
2
:E |
E‘ ﬁ1m kl‘“
TMIE —

904N

Kastritis et al, 2012

> Provides kinetic constants K, = Kot
(kon and koﬁ) K

on




II. Protein abundances and competition

The effect of abundance variation at XOR network motifs

B C
50 nM
1 200 nM
— 1000 nM
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» The output/ function depends on both, network structure and abundance: we need to
know the network very well to understand

Kiel et al, Sci Signal, 2013



II. Protein abundances and competition

Competition at the Ras XOR node

Network motif The Ras XOR node

B
| 50 nM
— 200 nM
—— 1000 nM
i = 1.0 x 10° moll
= e 25 % 10€ mol/l
g 5.0 x10% mol/l
: 75 x10% moll
2 500807 | m— 1.0 x 104 moll - @
=
g
g
(6]
0.00E+00 -
» Gain and loss of function
A B IN SILICO
Expenmentaj S e e e S CEEES - 2
b d i ———— —_— _— —— noRIN1
abundances CYTOSOL [RasTm | — |Ra5D_m| | Grb-Sos_m | o 5.0 x 107 mol/l RINL
s i i T T — S 0.80 1.0 x 106 mol/l RIN1
e —— e — -
s e T =g [&] -6
o s || o A | RNt | [ craF| [RasD_c| | || Grb-Sos_c | S s | 1.5x 104 moll RIN1
" we = -6
: — g am— | I?<L | 3.0 x 105 mol/l RIN1
GRB2 (25 2403) MEK (MAP2K2) (44 4 £Da) m 0.40
»GREQ (GeraTer, GTXS1160) e P e e ‘\
Rllld Rl E@ © © 0.20 4
% —— Eg---—_
2 0.00 T T T T T |
K2MAPKY) (414 0 10 20 30 40 50 60
e | ERK || _ - _
P2 e o) Time after activation (min)
P r

Mathematical network modeling: increasing RIN1 to 10-fold higher of CRAF
expression should decrease CRAF activation

Kiel et al, Sci Signal, 2013



II. Protein abundances and competition

Experimental testing of competition at the Ras node

IN VITRO
MCF-7 HEK293
MCF-7 HEK293 . . .
[ 5 min HRG 5 min EGF 5 min EGF
5 min HRG 5 min EGF 5 min EGF = = 5
U RIN1 = 1 1 1
U RINL U RIN1 2l 0 N . .
< *%
o 06 06 06
a-CRAF-p ‘-- "n - O | o4 04 04
8 0.2 0.2 0.2
a-MEK-p ‘A — — 0 0 0
1:2 1:2 12
-ERK- —  — 1 14 1
@ P —— —— _—- S| os - 08 ki 08 il
g 0.6 06 06
OL-RSK-p —-— g — - ZIS 04 04 04
0.2 0.2 0.2
0 0 0
LC (actin) \”‘ e — I
o
N
o
u
3
Expression of RIN1 in MCF-7 and HEK293 cells
decreases CRAF, MEK, and ERK activation
o
X
0
x
3

» Alterations in the abundance of one of two hub-binding partners
affected downstream signaling

Kiel et al, Sci Signal, 2013



IV. Rewiring through disease mutations

Qualitative and quantitative effects of
disease mutations

Disease mutation

\




IV. Rewiring through disease mutations

General concepts of interaction (‘edge’) rewiring

Mutation
affecting folding

*
—>

/ Protein abundance

changes Protein abundance
- / interaction competition
» Kiel et al, 2013
* Romano (Kolch) et al,
0o 2014

Protein abundance
/ folding

N

(] Proteins -H
[ Domains and linear *

motifs

Alternative splicing

\ Mutation affecting

binding on the surface
of one domain:

*
—>

or

‘edgetics’ ‘enedgetics’

Zhong (Vidal) et al, 2009 Kiel & Serrano, 2014



IV. Rewiring through disease mutations

Examples how missense mutations can affect the network: a 3D
structural perspective

- Gain in signaling through release of autoinhibition

PTPN11 (2SH2)

Kiel & Serrano, Mol Sys Biol, 2014



IV. Rewiring through disease mutations

Examples how missense mutations can affect the network: a 3D
structural perspective

Class 1b Gain in signaling through destabilizing
mutation in active site: release of
autoinhibition in structural segments

- =~

[ Active| ﬁ
\ I’

Kiel & Serrano, Mol Sys Biol, 2014



IV. Rewiring through disease mutations

Examples how missense mutations can affect the network: a 3D
structural perspective

Class 2 Gain in signaling through loss of
interaction with inhibitors/

- deactivating proteins
Inhibitor 9P Inhibitor

Complex 0f14-3-3 with
peptide of Rafl (31QJ)

Kiel & Serrano, Mol Sys Biol, 2014



IV. Rewiring through disease mutations

Examples how missense mutations can affect the network: a 3D
structural perspective

Class 3 Folding affected (destabilization of
protein) ; gain in signaling for NF1 and
RASA1

(:f‘\ » L\' L
rx L k ‘~f
< -\//e\(‘/
NF1 ’
(INF1)

Kiel & Serrano, Mol Sys Biol, 2014



IV. Rewiring through disease mutations

Examples how missense mutations can affect the network: a 3D
structural perspective

Class 4  Gainin signaling through mutation of domains
involved in membrane recruitment

SOS1
(1DBH)

Kiel & Serrano, Mol Sys Biol, 2014



IV. Rewiring through disease mutations

Examples how missense mutations can affect the network: a 3D
structural perspective

i No effect; location on surface

= [k
m—)
\,Y%\;Z;?\_/

Ol

Kiel & Serrano, Mol Sys Biol, 2014



V. Examples for quantitative effects in disease networks

Example 1: RASopathy and cancer disease mutations

RASopathies: Developmental syndromes of Ras/ MAPK pathway dysregulation

» RASopathies are a group of developmental disorders characterized by postnatal
reduced growth facial dysmorphism, cardiac defects, mental retardation, skin
defects, musculo-skeletal defects, short stature, cryptorchidism

» RASopathies are caused by germline mutations in genes that encode protein
components of the Ras/ 12 proteins involved (HRAS, NF1, MAP2K1, MAP2K2,
RASA1L, SPRED1, SOS1, PTPN11, RAF1, KRAS, NRAS, BRAF)

» majority of mutations result in increased signal transduction down the Ras/MAPK
pathway, but usually to a smaller extent than somatic mutations associated with
cancer

Somatic mutations

O occur in non-germline
tissues

U are non-heritable (do not
affect offspring)

Germline mutations

U present in egg or sperm
U are heritable (all cells

affected in offspring) Christina Hannah

Kiel Benisty




V. Examples: 1. RASopathy vs cancer

What are the differences in mutations of the same protein
causing different disease (e.g. RASopathies or cancer)?

0 Ras/MAPK syndromes (‘RASopathies’) O Proteins in Ras/MAPK syndromes
are a class of developmental disorders (‘RASopathies’) are also found in cancer
caused by germline mutations

CFC,NS3 Costello  ALPS, NS6 NS8

NS4, HGF
-
8
s _-_--
¢ a2 GEF Ras-GDP
S¢S
<o) Torown | masre
- NS1, LS1
NS-like ‘

NS5, LS2
Raf

NS7, CFC, LS3

[ sHoc2 | [sPreD1

E T v

Noonan-like Legius

CFC

NF1_

HGF

I
3%)
var
ﬁ ndometriu ®
Cancer Glioblastoma

CFC, Costello RASopathy @ cancer

h

ERK

Kiel & Serrano, Mol Sys Biol, 2014
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V. Examples: 1. RASopathy vs cancer

FoldX-based energy calculations of proteins

3D Structural information

A force field for energy calculations and protein design
Schymkowitz et et al, Nucleic Acids Res, 2005

Relation to affinity: AG = RT In K

v' Total free energy ~ v* Interaction energy v" Mutagenesis

A rotamer library to replace the
20 amino acids

Protein design



V. Examples: 1. RASopathy vs cancer

Analysis of 956 missense mutations in RASopathies and cancer
based on structural information and FoldX energies

Gain in signaling through release of autoinhibition

- Gain in signaling through loss of Class 4  Gain in signaling through mutation of domains
interaction with inhibitors/ involved in membrane recruitment
deactivating proteins
Inhibitor 9P Inhibitor

' 4
SN ] F 4
o~ S e S
Wow o &
> =~ ) e \‘\ N
= o
b T S )) # ~
> Complex of1d-3-3with &
S— peptide of Raf1 (31QJ) '
Class 1b Gain in signaling through destabilizing Class 3 Folding affected (destabilization of Class 5 No effect; location on surface
; 2 ] mutation in active site: release of protein) ; gain in signaling for NF1 and

ibition in gl RASA1

o K o [:] * & K jg(
o e w
' B
N Ma«o

M SOs1

N
(1DBH)
NF1
(1INF1) }3

BRAF
(4EHE)

Kiel & Serrano, Mol Sys Biol, 2014



les and cancer:

RASopath

INn

Analysis of 956 missense mutations

high structural coverage

CbI_N CbI_N2 zf_C3HC4

CBL

CbI_N3

SH2 g SH3_1

956 mutants

@ FoldX

destabilizing or
disease-

causing

mechanism
known

O FoldX non-

427

—3-

HRAS, KRAS, NRAS

SH2 (RASA1)

SH2 (Nck1)

332

GAP (NF1)

destabilizing

O No

structure
and no

N~
(o]
-

MAP2K1, MAP2K2

disease

Kinase (BRA|

mechanism
known

1
1
1
1
1
1
1
1
1
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1
1
1
= 1
1
1
-
1
1
1
1
1
1
1
1
1
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1
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Kiel & Serrano, Mol Sys Biol, 2014



V. Examples: 1. RASopathy vs cancer

Multiple effects of a mutation even for the same protein/ protein
class

B 427 mutants HRas
3 Sos1 KRas, NRas

GDP
27
D"
NF1,RASA1

Inter-domain mutants

- PTPN11
CBL 102 O Active site mutants
SHOCZ Raf1,BRaf ] Inhibitory protein mutants
l O Folding mutants
5 B | ocalisation mutants
SPRED1 34
MEK1,MEK2
ERK

Kiel & Serrano, Mol Sys Biol, 2014



V. Examples: 1. RASopathy vs cancer

Cancer mutations tend to have higher destabilization values (on
average)

=
o

® RASopathy
®m Cancer

=
o

o
IS
]

Number of mutations
(normalized)
o o
N w

e
—_

o
I

0.8t0 1.6 1.6t05 510 10 >10
FoldX energy (kcal/mol)

Foldx

Kiel & Serrano, Mol Sys Biol, 2014



V. Examples: 1. RASopathy vs cancer

Quantitative effects on protein stability, or activity could explain in
some cases the different phenotype: cancer or RASopathy

A GEF-catalyzed nucleatide exchange

Kee;
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Keoy
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Kiel & Serrano, Mol Sys Biol, 2014

Y
RASopathy

o

Cancer

‘Enedgetics’: quantitative
edge effects

‘Edgetics’ + energies =
‘enedgetics’

Quantitative effects on protein
stability, activity, or folding
explains in some cases the
different phenotype




Compensatory effects of mutations on different interaction

partners

HRAS, KRAS, NRAS —a—

Kiel & Serrano, Mol Sys Biol, 2014
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V. Examples: 1. RASopathy vs cancer

Conclusions example 1: RASopathy vs cancer

= A systematic analysis of 956 RASopathy and cancer mutations based on
structures and energy predictions is presented.

= Even for the same gene, different disease-causing mechanisms exist
depending on the type of mutation.

= Energy changes are higher for cancer compared to RASopathy mutations.

» |n some cases, RASopathy mutations show compensatory changes that, as
predicted by network modelling, result only in minor pathway deregulation.

» Combined network-based and structural B RASopathy
analyses show that quantitative changes M Cancer e )
rather than all-or-none rewiring underlie e < ‘*
the difference between RASopathy and g | ' haip |
Cancer mutations. : )|
0.

EG9Q E69K



V. Examples for quantitative effects in disease networks

Example 2: Rhodopsin disease mutations



V. Examples: 2. Rhodopsin mutations

Rhodopsin: involved in light perception in rod outer segment

Understanding disease mutations in rhodopsin, a
common cause of retinitis pigmentosa (RP)

W\ i o \r:z.nal

Rhodopsm Signal transduction
V

))))))

J\l i'\“l\ |
l H l”l‘

> ’ Ll)j

rod inner segment rod outer segment

outer segment

Arrestin



V. Examples: 2. Rhodopsin mutations

Analysis of 103 mutations in rhodopsin linked to RP

Is there a correlation between energy changes of rhodopsin missense-mutations and
their potential affect on clinical severity of Retinitis Pigmentosa (RP)?

~~
O
N

8
7 EType 1
® mType 2
© 6
j=s |
|| o
=2 5
S £
Energy changes _ = &
correlation & ;
£
Fold + > i
o 1 l
0- T
0to10 11t020 21t030 31t040 41to50 51t0o60 61to70 71to 80
[\5 years years years years years years years years

Average age of individuals with daytime vision loss

Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

Several consideration for studying the effect of missense
mutations in rhodopsin

1) Rhodopsin is a membrane protein: can we use
FoldX, a design algorithm developed for soluble proteins,

A coolldoo E— for predicting the effect of mutants for a membrane
N protein?
| AROMATIC CROWN | TN
. R S el , : ,
\ ‘(’.;," “fj f 3 cvropLask Region | mutants (intradiscal):
Che, & ) Tr¥ci | v YES, not in membrane
S0 oY A o000
$3 S y \)y $$ 5 Region Il mutants (cytoplasm):
e % $33 ¢ v YES, not in membrane
) ‘\"x)_ MEMBRANE ( q q q
\ TS , Region IV mutants (residues pointing outside and facing
4 R A . -
Y d 232 the lipid bilayer):
g & S $3 NO, a mutation from hydrophobic to polar residue could
. > i elele, | be predicted favorable by FoldX, but would prevent
- G 7,“;’“ — proper integration of rhodopsin into the membrane.
| AROMATIC CROWN | I{;;, - /5 (\”
1 =
N-terminus e

Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

For analyzing Region IV mutants (residues pointing outside and
facing the lipid bilayer): use a different algorithm

Linking amino acid sequence to
membrane insertion efficiency

G1

Inserted
ER lumen
l l H ™ l ™2
oplasm
\J e ./
P1 P1

Figure 1| The Lep model protein. Escherichia colileader peptidase (Lep) has
two TM helices (TM1 and TM2) and a large luminal domain (P2). It inserts
into rough microsomes in an Nj,,,—Cy,,q, orientation. H-segments {red) are
engineered into the P2 domain with two flanking Asn-X-Thr glycosylation
acceptor sites {G1, G2). Constructs for which the H-segment is integrated
into the endoplasmic reticulum membrane as a TM helix are glycosylated
only on the G1 site (left), whereas those for which the H-segment is
translocated across the membrane are glycosylated on both the G1 and G2

sites (right).

Hessa/ von Heijne et al, Nature, 2007

This algorithm is based on experimental results,
in which systematically designed 19-residue long
amino acid sequences have been expressed and
tested in-vitro for TM insertion.

AG prediction server v1.0

Given the amino acid seq of a putat (TM) helix. the server gives a prediction of the 9
apparent free energy difference, AGm' for insertion of this sequence into the Endoplasmic Reticulum (ER) membrane by

means of the Sec61 translocon. The senver runs in two different “modes”, for two different types of quenes:

e AG prediction Predict AG_” for b ofap | TM helix.
o Fuyll protein scan. Scan a protein sequence for putative TM helices



V. Examples: 2. Rhodopsin mutations

Several consideration for studying the effect of missense
mutations in rhodopsin

A C-terminus

| AROMATIC CROWN |
N
-

N\

¢ ? <&
O00O0O <
s
-_'f s
.‘ o7 '8 A \
AROMATICCROWN | ™~ &/ /v €
‘ shos 7T 1 7\
. f; 8 J l
Region ll 7 B
$ i =
N-terminus

Region |l

’ CYTOPLASM

0000

P MEMBRANE
eyt

:. / éx-
i g,.#i‘ooo

#.« INTRADISCAL

Rakoczy et al, J Mol Biol, 2011

1) Rhodopsin is a membrane protein: can we use FoldX, a
design algorithm developed for soluble proteins, for predicting
the effect of mutants for a membrane protein?

Region | mutants (intradiscal):
v YES, not in membrane

Region Il mutants (cytoplasm):
v YES, not in membrane

Region IV mutants (residues pointing outside and facing the
lipid bilayer):

NO, a mutation from hydrophobic to polar residue could be
predicted favorable by FoldX, but would prevent proper
integration of rhodopsin into the membrane.

Region V mutants (residues facing inside the helices):

NO, FoldX desolvation effect is possibly not appropriate since
the reference state in soluble proteins is water and in
membranes, lipids.

BUT: VanderWaal’s clashes of course will be the same for a
soluble or membrane protein. To avoid issues related to the
proper calibration of the desolvation effect for buried residues
in membrane proteins for residues in Region V we determined
both the overall change in energy and the Vander Waals’
clashes.




V. Examples: 2. Rhodopsin mutations

Several consideration for studying the effect of missense
mutations in rhodopsin

2) Retinal-free Rhodopsin is unstable: If an amino acid residue contributes to binding a mutation
might not necessarily lead to destabilization (energies of retinal not calibrated) — We need to identify
all residues in the retinal binding area, and treat the results of mutations involving these residues,

separately.
Figure S9
Retinol binding area, but more than 6 Anstrom 11-cis-retial binding area
12 i (<6 A)
Y1¥y8C
sigep }§ P171L |CTO7R
¥ - \]P Class Il (no binding to
10 Bl 1l-cis-retialatall), - —
stay in ER
QdgH
a i [ ]

8 I - .
. 1 PSSHINT Class Il (different levels of
E § : '. binding to 11-cis-retial)
52 I G10BW G51R =
28 'm ci1oy

X 6

o~ i
O < 1
g 2 : ‘ lower expression levels
== i G90D P
o= ' .y,

D BN O v i S s S -

TAK T
M _ﬁfzs * WT expression levels ‘
1
2 '\ - L125R
AR
WT F45L fold normal) ‘
0
-5 0 5 10 15 20 25 30

AAG FoldX Kcal/mol

Figure $9 Correlation of FoldX AAG values with in vitre expression levels and chromophoere binding properties. In vitre data for protein expression levels and
chromophore binding capabilities were taken from Kaushal and Khorana [19] and Briscoe et al. [49]. Involvement of mutants in different Classes (according to the
. Mendes [20] classification) are indicated. For mutants that show no binding of 11-cis-retinal at all (no peak at 500 nm), we assumed that it corresponds to a ratio
Rakoczy et aI, J MOI BIOI! 2011 A280/A500 of 10. (The reason to assume this was that when A500 is very low, the ratio is round 8 to 9).



V. Examples: 2. Rhodopsin mutations

Several consideration for studying the effect of missense
mutations in rhodopsin

3) Rhodopsin is involved in other functions (e.g. binding to partner proteins): A mutation might cause

disease but not be predicted destabilizing with FoldX — We need to know as much as possible about
rhodopsin function.

FUNCTION

CONSERVATION DISEASE MUTATIONS
Cys-bridge Not invariant - Not found mutated

@ Glycosylation site/motif O |nvariant in Rhodopsin family - Mutated in RP

(0 P-site/Arrestin binding

@ Cilia-bindi Fi [J Invariant in GPCR family
Hia-dinding maot

® Paimitoylation

@ Coordinating cons. water
@ Rhodopsin kinase binding
Interface transducin

30%@@@@@@@@6\?3@@0@.@@@@&5@@@@@0@0@

Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

Five structures of bovine rhodopsin were selected (<2.6 A) for
mutagenesis and protein stability analysis using FoldX

2G87,2.6 A

1U19,2.2A 1L9H,2.6 A

1GZM, 2.65A 3C9L,2.65 A

Rakoczy et al, J Mol Biol, 2011



| Disulfide bridge
B Retinal binding

B Rhodopsin kinase binding

D No known other function

Mutants that are destabilizing (AAG > 1.6 kcal/ mol)
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Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

FoldX energy results and involvement in other function

(b)

B cilia binding motif
. Glycosylation motif

. Interface transducin

3 Type 3 (asymptomatic) B Retinal binding
o5 s g N . Rhodopsin kinase binding

'2 [ = / / \ I P-site/Arrestin binding
1.5 +—= - ’ \

- || No known other function
E 1 \
3 o I 2 e . Se
e = l | [. TEEER
x 0 T T T T - —
=
S .05 x
S 4
3 T
1.5
2
2.5
o Jd = w I o =" —
IR
nrzudz3d " Rz EF

Mutations with AAG < 1.6 kcal/mol

» Mutants that are not destabilizing, are usually involved in other functions, which can
explain their disease-causing effect.

Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

FoldX calculations and comparing with phenotypic data

'v206  |[P23a |[P2aL  |[P2sH || q2sH |[Leor | maaT |[Gs1R | G5ty || TEBR |
' verD || asap || ceop || Goov || Tear || G1osR || Groew || GrosR || c11ov || c11oF |
[ c11or |[ 6114p |[ Gr1av |[L12sR |[ s127F | [ L131p || Rease || Ri3sw || R13sp || Ev50Kk |
L ateav || ateae || cre7r || crerw || P1ror || P17eE || Pi7as || Pi7aL || Pi7ia || st7eF | A FoldX AAG
L viren || virac || P1aoa |[ E1sik || Gisas || ais4p || c1esr || s1sew || cre7y || c1seR | —

[G1aee || D19on || D19oG || D1sov || M207R || H211P || H211R || P215T || P21 || M216R |

(bovine: Leu)

[y
(™)

(=Y
=

[ M216k || T280p || A202E | I

(bovine: Leu)
Resid tb l—l A
esidues cannot be
analysed with FoldX: FoldX >1.6kcal: 63 2

G (FoldX)

12 (Region IV, Van Heijne) —
0 - — T
| F45L | L46R I F52Y Type3 Type2 Typel
non-symptomatic
| Pssr || Fsey || vaoem
B ’
| F220c |[ F2200 || P2e7L | Total number of | ?t zlirated) SIFT
| P2e7R || s270R || s207R | mutations: 103 045 ]
(bovine: Gly)  (bovine: Thr) 0.4 J ¢
l 0.35 {
Bad structure: 2 3 o2
=
C222R_|| L328P FoldX < 1.6kcal: 26 - .
Functional @ " [o0.00e3 0.0034
. . 0.15 — H
residues:19 - (non-tolerated) (non-tolerated)
TaK N15s || T17m ' B -
| | | oo |
| Taas || craos || RessL = I

Unexplained/
misdiagnosed: 4 | st86p || E3a1k || T3d2m

vaasi | | vasL || Assep
|
[vea [ s ] (20 PR P

non-symptomatic

| Type3 Typel Typel

Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

Correlation of daytime vision loss and night blindness with FoldX
energy calculations

Different therapies should be used for the three different types of mutations

@), (b)

50
| cery

_ N a0
2 \ Disulphide Bridged ’—g‘
=
3 30 S =
i G114D (ret bindi i g % =

o i o)
l-(; . | G| DRSE, "‘i"'S'lTsllf C110F ! o ° 20 b 4
ps | msds . iaszs % ¢

H £
e 0199" ' Foldidg mutants @ ¢
10 : : -
'; p215|£ ) i 10 P215|_‘ \I\
L4gR 75 ; ¢
Retinal binding B -Dm? &/ @ | \
0 M2°7F‘|' S G106R N' T
10 20 30 L 4 50 6 70 80 0 | -
Y178C  M44T GSOV V20G -1 0 1 2 3 4 5 6 7
Average age of onset of daytime vision loss (year) Average age of onset of nightblindness (decade)

Rakoczy et al, J Mol Biol, 2011



V. Examples: 2. Rhodopsin mutations

Conclusions example 2: Rhodopsin mutations

= The majority of the mutants is located within the hydrophobic core of the
corresponding proteins and are therefore likely to cause misfolding.

Quantitative predictive assessment for the severity and onset of the

disease:

» For folding mutations where sub-typing was available we found a significant
correlation between FoldX energy changes and both the average onset age of
night-blindness, daytime vision loss and visual acuity.

Most important conclusion:

» a high level of functional understanding was
necessary for our analysis and the observed
energy-phenotype correlation.

‘%@@@@@@&@@0@.@@@@&@@@@@0@0@»~~



V. Examples for quantitative effects in disease networks

Example 3: BRAF mutations in cancer. Why V600E?



V. Examples: 3. Why BRAF V600E?

The most common BRAF mutation is V600E and induces

constitutive kinase activation Patients are treated with a

BRAF kinase inhibitor
a BRAF

100,000
10,000-
1,000-
100-
10-

1 N

Number of
mutations

200 300 400 700 766

00
Shall we only treat patients which harbour V600E mutations or also patients with non-V600E
mutations?



V. Examples: 3. Why BRAF V600E?

Catalytic activity of kinases is usually tightly controlled
Mechanisms for kinase activation are:

- phosphorylation

- additional domains or subunits of the kinase

- scaffolding proteins

- kinase dimerization

Mutations in kinases (e.g. BRAF) can cause constitutive kinase activation and
over activation of downstream signaling, which can cause cancer

BRAF mutation-positive
Normal cell melanoma cell
Normal signal source Normal signal source

Out—ocntrol

Normal cell growth Increased cancer cell growth

> “@
A AN



V. Examples: 3. Why BRAF V600E?

Kinases are activated through mutations in the activation loop
(activation segment)

« phosphorylation in the
activation segment causes
structural rearrangements of
the activation segment and
the aC helix. This reorients
the DFG loop resulting in
activation of the kinase

Taylor & Kornev, TIBS, 2011



BRAF kinase activation though oncogenic mutations (e.g.
V600E)

V600E mimics the negative charge of the neighbouring phosphorylated Thr599-P

DFG Motif

Nucleotide-Binding Pocket

P-Loop

Activation Loop

Catalytic Loop

Activation loop residues: form strong hydrophobic interactions with the P-loop in the inactive
conformation of the kinase, locking the kinase in its inactive state until the activation loop is
phosphorylated, destabilizing these interactions with the presence of negative charge. This triggers the
shift to the active state of the kinase. Specifically, L597 and V600 of the activation loop interact with G466,
F468, and V471 of the P-loop to keep the kinase domain inactive until it is phosphorylated




V. Examples: 3. Why BRAF V600E?

Focus on the position Vale00 in the kinase BRAF

V600 is buried in a hydrophobic pocket formed by the activation segment (AS)
and the aC helix

b

L 1o aC helix
N-lobe - N
DFG motif

Activation
segment

Catalytic { Catalyticloop (AS)

cleft =

C-lobe |

-

V600E: mutation hot spot in cance.
100000 1 <«—

. 10000 -
(1)}
(6]
§ % 1000 -
o8 1001 Differences in mutation
q’ - - -
E E 49 frequencies: a quantitative effect?
Z
1 -

R

& & g
\\%

L © @ & L & ¥

Kiel et al, Elife, 2016



V. Examples: 3. Why BRAF V600E?

The V600E mutation causes a high destabilization of the inactive
state (aC helix/AS hydrophobic pocket)

N-terminal subdomain Hydrophobic pocket

Destabilization of

Total destabilization: ) ;
Inactive state

"~ FoldX AAG (BRAF_T)

Number of mutation in cancer

Total destabilization
A >1t010
<0.8 kcal/mol
A >10t0 100 [ >0.8 < 1.6 kcal/mol
A =100 to 1000 . >1.6 < 3.2 kcal/mol
Bl >3.2 kcal/mol
= A > 1000 (V600E)

4

P

o

i
<S<H4VIPTVZEr X" IOTMMOO>

(kcal/mol)

Fold){ =46 )

o 2 N W s, o~
LS P [ | S S I |

FoldX AAG (BRAF T)

EWKRDPHQGFYSNMTI ACL
Mutation at position V600

No destabilization of active

Kiel et al, Elife, 2016 state (data not shown)



V. Examples: 3. Why BRAF V600E?

Distinguishing driver from passenger mutations

3 7
E 5
= al
Fold{ ¢ ¢
X 2
g 4]
(I 3
EWKRDPHQGFYSNMTIACL
Mutation at position V600
\ ] | AR )
| I | \
V600K, D, and R l V600A, M, and L are
have very similar Fitness?? not very destabilizing
destabilizing energies > cancer passenger

> cancer driver

Kiel et al, Elife, 2016



V. Examples: 3. Why BRAF V600E?

V600G behaves more like a RASopathy mutation

Google search for “V600G BRAF CFC syndrome” V600G found
as a RASopathy mutation®©®

Germline mutation in BRAF codon 600 is compatible with human
development: de novo p.V600G mutation identified in a patient with CFC
syndrome

Champion, KJ?; Bunag, C?; Estep, AL%; Jones, JRY; Bolt, CHY; Rogers, RC?; Rauen, KA®; Everman, DB?

Clinical Genetics, Volume 79, issue 5 (May 2011), p. 468-474.
ISSN: 0009-9163 DOI: 10.1111/}.1399-0004.2010.01495.x
Blackwell Publishing Ltd

0.6 -
= RASopathy

o
3

m Cancer

“enedgetics”
LAl Cancer mutations tend to have higher
5 | destabilization values (on average)
65 Kiel & Serrano, 2014
0.1
04 . ;

0.8t01.6 16t05 5t0 10 >10
FoldX energy (kcal/mol)

Number of mutations
(normalized)




V. Examples: 3. Why BRAF V600E?

Different energy thresholds for germline and somatic mutations?
‘Condition-dependent phenotypes’

 V600E germline: developmental lethal

V600G germline: non-lethal, but developmental defects
(CFC syndrome)

Phenotype: Developmental defects

~——

e

V600E somatic: cancer driver

Phenotype: Cancer

V600G somatic: cancer passenger (non-disease
causing)

Phenotype: normal (or fithess/ or together with other mutations)




V. Examples: 3. Why BRAF V600E?

Why different cancer frequencies for V600E, V600D and V600K?

Fold X

O = N W e ;o
o1 M, AU AN (S VST MY |

FoldX AAG (kcal/mol)

EWKRDPHQGFYSNMTI ACL
Mutation at position V600

V600K, D, and R have very similar destabilizing energies

Why is V60OE the by far most frequent mutation?

aa frequency

Glu 15474
Lys 164
Arg 36
Met 25
Ala 22
Asp 20
Gly 11

Leu 2



V. Examples: 3. Why BRAF V600E?

Why different cancer frequencies for V600E, V600D and V600K?

100000 -

—
s %
8 e

Mutation frequency (COSMIC)
3

722222222277

L \ § N
\ N X

e

V600E V600K V600D V600R V600G VE00A VEOOM VE00L

v

?DDH V600E: 15474 frequency COOH

NH,~ C — H : |

2~ ¢ V600D: 20 frequency NH,— C — H
?Hz Distinguishing cancer driver from passenger mutations: flJHz
Glu CH, Is V60OE a driver mutation and V600D a passenger mutation? | AS

' On the molecular level: Glu and Asp have similar biochemical C=0 ¥
c-0 : Asp have similar biochemica |
| properties OH

OH



V. Examples: 3. Why BRAF V600E?

Why different cancer frequencies for V600E, V600D and V600K?

Second Letter
) Cc A G
UUU | Phe |UCU UAU Tyr |UGU |Cys |U
U |UuC ucc Ser |UAC UGC Cc
UUA Leu UCA UAA Stop |UGA Stop|A
uuG UcG UAG Stop |[UGG Trp |G
cuu cCcu CAU His |CGU 1)
C |CUC | Leu[CCC Pro | CAC CGC Arg Cc
1st CUA CCA CAA Gin |CGA A 3rd
CuG CCG CAG CGG G
letter AUU ACU AAU Asn |AGU | ser |u |letter
A |AUC lle |ACC Thr |AAC AGC C
AUA ACA AAA Lys AGA Arg A
AUG et | ACG AAG AGG G
GUU GCU GAU Asp |GGU 1)
G |GUC | val |GCC | ala |GAC GGC Gly Cc
GUA GCA GAA Glu GGA A
GUG GCG GAG GGG G

» The higher mutation frequency of V600E
compared to V600D can be explained
VBOOK: AAG based on the number of nucleotide
VBOOE: GAG VBOOR: AGG substitutions needed: V600D requires 2
V600D: GAC/T nucleotide substitutions



V. Examples: 3. Why BRAF V600E?

Experimentally validate the effect of BRAF mutations by
monitoring downstream MEK activation (HEK293 cells)

Day2:

Dayl: Transfect flag- Days:
Seed HEK293 9 Lyse cells and
BRAF WT and
cells Western blot

@a@a@j@

& Q ¥
§ § §
S L L ©

1 e

e e 0 e o (BRA 81 Re=0.9433
. a-BRAF-p

- -m- o o g - - (pSer445) 160

o-MEK1/2

. | “Q!.!pg————--“‘" (pSer217/221)

—— — ——— — —— .—.-.’“—"" " | a-actin (LC)

140

120

250 -

100 1>
200 -

MEK-p (normalized to BRAF total)

150 80

60 « T T T T T T )
-1 0 1 2 3 4 5 6 7

MEK-p (normalized to
total BRAF) (%)
=)
)

o
o
L

FoldX AAG [(BRAF_inactive_loop) —
(BRAF_active) + (BRAF hydr_solv_energy)]
(kcal/mol)

Fold X

o

WT
V600E
V600D
V600K
V600M
V600A
V600G
V600W

Kiel et al, Elife, 2016



V. Examples: 3. Why BRAF V600E?

Experimentally validate the effect of BRAF mutations by
monitoring downstream MEK activation (HEK293 cells)

a-flag
(BRAF )

a-MEK1/2

S T 0171221

—
T - e - | oactin (LC)

500 -
_ 400 -
= 300
200 -
100 -

MEK-p (normalized to
total BRAF) (%)

. Single nucleotide substitution

[l Triple nucleotide substitution

[ I

[l

V600E

V600H

V600G

L597Y

» V600H (requires 3 nucleotide substitutions) is as active as
V600E, but NOT found in cancer. Similarly L597Y is not
found in rasopathy patients.



V. Examples: 3. Why BRAF V600E?

Why are no mutations at other positions in the hydrophobic pocket - in a
different position to Val600 - found frequently mutated in cancer?

FoldX prediction: other mutations in the hydrophobic pocket destabilize the
pocket and may thereby release the AS, would also affect the folding of the
inactive and/or active kinase

. Day2: Day3:
Seetljj E:i)IIElI-(293 Transfect flag- Lyse cells, Supernatant
B cells BRAF WT and fractionate and = soluble
mutants Western blot fraction
74
B 1 s C s o= o
8¢ insoluble
580 fraction
=®
o £
£ ke 4 -
(o] TE& c . N . )
- S N A &
X g \\QQ \$« \\Q;Q \\b?’ \g;l’
g‘g ol — — o o —_— E 30,
I a-flag
‘5% 149 25 |---—----~...|<BRAFM)
=3 535
2.5 3
QE 0 1 ® & |-———---—~i ct o
= 5] 3-3
fl f
@ QQQ’ QQ$ 6\(0 qf-"@ q%% %é |'—- — - - _‘ ?BR?FM) mé
£ & ¥ @ 53 :
B I — ——* a-actin

» Experimentally: lower BRAF expression levels (and
MEK phosphorylation)

Kiel et al, Elife, 2016



VII. Discussion

Conclusions/ Wrap up

- Quantitative information is important to consider in PPl networks; however, it
is often difficult to address these quantities experimentally.

- Protein quantification is not a solved problem; especially in mammalian cells,
because of the problem of shared peptides for isoforms and splice variants

- It is impossible to measure binding affinities and kinetic constants in a high-
throughput manner (protein expression and purification needed)

- The effect of mutations can be assessed in a quantitative manner using
protein design tools, provided 3D structural information is available

- Structural analysis of mutations could suggest for different therapies for
mutations happening at different regions of the protein

- In GWAS analysis the number of base changes required for a mutation
should be considered in the analysis. Two mutations with the same
frequency, one could be neutral and the other deleterious if the first one
requires on base change and the second one, two.
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V. Examples: 3. Why BRAF V600E?

Conclusions example 3: Why BRAF V600E?

= BRAF mutation frequencies depend on the equilibrium between the
destabilization of the hydrophobic pocket, the overall folding energy, the
activation of the kinase and the number of bases required to change the
corresponding amino acid.

Why BRAF V600E?

= V600E is the only single nucleotide substitution (Asp, Lys, and Arg, require two
bases substitutions) that opens the AS through destabilization of autoinhibitory
interactions, without significantly impairing the folding of the inactive or active
kinase domain.

FOLDED KINASE

% )) AAGinai:tive

HIGHERACTIVITY

AAGinactive_loop "

\ }
NUCLEOTIDE
SUBSTITUTION
FREQUENCY o O

» The results underscore the
importance of considering changes at
both the DNA and protein level when
attempting to understand why certain
cancer-causing mutations are more
common than others.

BRAF total [ i I8 N N B & &
MEK-p -~ |




VI. Summary tools & websites

Quantitative PPI networks

[ e
k_)F
(g

PROTEIN DATA BANK

Bl Interactome 3D

JsSysmMa
} Y O
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VI. Summary tools & websites

Protein abundances

€ea>CD pax-db.org

w PQXd b4 PaxDb: Protein Abundance Database Downloads Help Archives~  Abou

x proten Chame

L < P

Browse species

All ~~ all organisms (56)

"B 4

X. tropicalis G. gallus P. trogiodytes H. sapiens C.fa
Data Overview
Species < Predicted proteome size < Datasets Proteins Covered +
Homo sapiens 20457 170 a8%
Mus musculus 22883 75 0%
Arabdopsis thaliana 27418 48 76%
Darso reno 28163 20 59%
Eschenchia coli str. K-12 substr MG1855 4146 18 98%
Saccharomyces cerevisiae 8692 17 98%
Caenorhabdits elegans 20517 10 80%
Drosophila melanogaster 13937 10 95%
Schizosaccharomyoces pombe 5134 8 90%
Zea mays 92413 7 8%

http://pax-db.org/



VI. Summary tools & websites

Affinities and kinetic constants

1
Bifitling s

myBOB logout
o Search and Browse
Target
Sequence
Name &
KI IC50 Kd EC50
Rate constants
4G" AH* -TAS*
PH (Enzymatic Assay)
pH (ITC)
Substrate or Competior
Compound Mol. Wt
Chemical Structure

Patnways

Source Organism

Number of Compounds

Monomer List in ¢sv

Het List in SOF
Compound

FDA Drugs

Important Compounds

Chemical Structure

Name

SMILES

Number of Data / Targets
Special tools

30 Stucture Series

Find My Compound's

Targets

Fing Compounds for My

Targets

Do Virtual Screening
SCOP

Citation
Author
Joumnal/Citation
institution
PubMed
PubChem BloAssay
US Patent

https://www.bindingdb.org/bind/index.jsp

Home Into

BindingDB is a public, web-accessible database of measured bi
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The Binding Database
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B 1,207,821 binding data, for

6,265 protein targets and 529,618 small molecules.
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Simple Search 5 . . T lGe. ahways free to o
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BindingDB Molecule
such as BDBMS013
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VI. Summary tools & websites

General ‘numbers’ in biology
= TONUNMB3RS

THE DATABASE OF USEFUL BIOLOGICAL NUMBERS

Home \ Search Browse i

Resources

Cell Biology by the Numbers [

Key Numbers for Cell Biologists

Cell size Concentration
Bacteria (E. colf): =0.7-1.4 um diameter, 13. Concentration of 1 nM in:
=2+4 um length, »0.5-5 um? in volume; E. coli is =1 molecule/cell;
10%10° celVmi for culture with ODyeo=1 Hela =1,000 molecules/cell
Yeast (S. isiae): =3-6 pum dk 14, Ch risth

ration for

=20-160 um? in volume
Mammalian cell volume: 100-10000 pm?;

ngmswuhddoc.b

Nucleus volume «=10% of cell volume
5. Cell membrane thickness =4-10 nm
6. “Average” protein diameter =3-6 nm
7. Base pair: 2 nm (D) x 0.34 nm (H)
5. Water molecule diameter =0.3 nm

Division, Replication, Transcription,

Translation & Degradation Rates

at 37°C with a temperature dependence Q10 of =2-3

4. Cell cycle time (exponential growth in rich
media): E. colf «20-40 min; yeast 70-140
min; human cell line (Heka): 15-30 hours

10. Rate of replication by DNA poly

a signaling protein =10 nM-1uM
15 Water content: =70% by mass; General

Composition of E. coll (dry weight):
=55% protein, 20% RNA, 10% lipids,
15% others

7. Protein conc. =100 mg/mi=3 mM. 105107
per E. colf (depending on growth rate)
Total metabolites (MW<1kD) ~300mM

Energetics
18 Membrane potential ~70-200 mV -
2-8 kaT per electron (kgTethermal energy)

19 Free energy (AG) of ATP hydrolysis under
pht conditions
=40-60 kJ/mole = =20k, T/molecule ATP;
\TP molecules required to make an
E. coli cell =10-50x10°
20. AG® resulting in order of magnitude
ratio between products and reactants

o

e 40 b o T rip
RNA poly 10-100 b

1. Translation rate by ribosome 10-20 aa/s

rates (proliferating celis):
mRNA half life < cell cycle time;
protein half life = cell cycle time

E. coli =200-1000 bases/s;
lon by

http://bionumbers.hms.harvard.edu/

rations:
w8 kJ/mol w60 meV =2 KT

Useful d from the
mmmmmmm-
“rule of thumb" values. References are in the online

website.

Diffusion and Catalysis Rate

21

Diffusion coefficient for an “average”
protein: in cytoplasm De5-15 um?/s <
=10 millisec 1o traverse an E. coll ?=10 s
to traverse a mammalian (Hela) cell; small
metabolite in water D=500 um?/s

'2. Diffusion limited on-rate for characteristic

protein =108-10° s*'M-! - for a protein
substrate of concentration =1uM the
diffusion limited on-rate is =100-1000 s*!
thus limiting the catalytic rate K.,

Genome sizes & Error Rates
23. Genome size: E. coli =5 Mbp;

S. cerevisiae (yeast) =12 Mbp;

C. elegans (nematode) =100 Mbp;
D. melanogaster (fruit fiy) =120 Mbp;
A thaliana (arabidopsis) =120 Mbp;
M. musculus (mouse) =2.5 Gbp;

H. saplens (human) =2.9 Gbp;

T. aestivum (wheat) =16 Gbp

24. Number of protein-coding genes:

E. coli =4,000;

S. cerevisiae =6,000;

C. elegans, A. thaliana, M. musculus,
H. sapiens =20,000

25. Mutation rate in DNA replication

=10-10""° per bp

26. Misincorporation rate:

transcription =10+ per nucleotide;
transiation =10-2-10+ per amino-acid

Click on a number to see full
description and reference
www.BioNumbers.org
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Protein structures

RCSB PDB Deposit + Search~ Visualize + Analyze ~ Download ~ Learn ~ More ~

o0

& PDB Anlmo,ma"ogn o ’ e ' o e e
118087 Biological o>edrch by PUB 10D, aulnor, macromoiecuie, sequence, or iigc

=

» Macromolecular Structures
PROTEIN DATA BANK Advanced Search | Browse by Annotations

Rd O8LBVIDS - a \"
PDB~-101 ‘?’ERE !t:\_ll):u_ﬂsn_k_ .G]Dﬂ-" StructuraiBiology

A Structural View of Biology

R Welcome This resource is powered by the Protein Data Bank
archive-information about the 3D shapes of proteins,
nucleic acids, and complex assemblies that helps
students and researchers understand all aspects of
biomedicine and agriculture, from protein synthesis to

Q Search health and disease

The RCSB PDB builds upon the data by creating tools
and resources for research and education in
molecular biology. structural biology, computational
biology, and beyond.

#» Deposit

Ed Visualize

Analyze

Zika Virus Structure
& Download

B Leamn

Lead Poisoning

http://www.rcsb.org/pdb/home/home.do



VI. Summary tools & websites

3D structures of protein interactions

Home Downioad References Statistics News Tutorials Help About

Interactome3D is a web service for the structural annotation of protein-
protein i i cks. Submit your i ions and the server will
find all the avaslable structural data for both the single interactors and the
interactions themselves. Additionally you can also visualize and download
structural information for interactions involving a set of proteins or
interactomes for one of the precalculated organisms.

1f you have any doublts read our section of Frequently Asked Questions.

The current version of Interactome3D is. Release notes

i Submit your interactions Q.Ouery interactions with proteins
Bt s s o yot ® [reunrie] En_leraﬁh?fﬁUmpmtACﬁ()orgemnanesz@ &3
For ex esl_gaset | |aoeee

P01848
Enter a hist of interactions (max  10000) Every interaction has to be ADAQHD
entered in a separate line, as a pair of space-separated Uniprot 061443
ACs (') @
[Forexample
{ADASES ADAS89 = e
{ADASBS PD1848 [} Only show the proteins in the list @ |[Homosapiens v |
[ADACHD 061443 =

Q.Browse for organism
£
Select one of the pre-calculated organisms.
or upload your interactions from a file: (@)
> Arabidopsis > Mus musculus
thalana » Mycobactenum tuberculosis

Email (**): Your emall address. | | Submit | > Bacillus subtilis > Mycoplasma pneumoniae

> Bos taurus » Plasmodium falciparum

. > Caenorhabditis > Rattus norvegicus
Tutorla' 5 Camg abter > Saccharomyces cerevisiae
sarm how o use Interactome3D jejuni > Schizosaccharomyces pombe Send feedb

http://interactome3d.irbbarcelona.org/



VI. Summary tools & websites

3D structures of protein interactions/ mapping of disease
mutations

Q dSVS' | l&' p Home Browse Downioad Stats Tutorial Help About
Ll L]

dSysMap (Mapping of Human disease.related mutations at the systemic
level) displays Human disease-related mutations on the structural interactome.
Mapping of mutations on protein structures and on interaction interfaces allows
you to visualize the region of the interactome that they affect and helps in
rationalizing their mechanism of action

The current version of dSysMap is 2015_05

Is this you first time with dSysMap? Take a 5 minutes Tutorial!

( Tutorial :: Learn how to use dSysMap )

Browse diseases Query with a list of proteins
Select a disease from the following ist. Enter a list of proteins (Uniprot AC or gene name)
Example: Loeys-Dietz syndrome For example
Type here the name of a disease or browse the list.. ETFA, ETFB, ACADM, ACADS, ACADVL, SOCS3,
© Bactenal infection or mycosis IRF7. GPHN, RPSA
© Blood disease
© Cancer
© Cardiovascular disease Submit
© Congenital abnormality
© Connective tissue disease 2 2
© Digestive system disease Submit your mutations
© Ear-nose-throat disease Enter a list of mutations (which format?) s
© Endocrine system di ‘
© Eye disease | For example
© Fetal disease | APC: p. Ala1582Lys, p. Thro06Trp
© Genetic disease | AXIN1: p.Phe119Al3, p.GIn190Arg
© Immune system disease : oLGY
D Infant-newbom disease L |

Submit

http://dsysmap.irbbarcelona.org/



VI. Summary tools & websites

Protein design

Fo l d x PRODUCTS ~ LICENSING AND SERVICES ~ SUPPORT ~ DOWNLOAD ~ ABOUT ~

CRG?

LOGIN REGISTER

Products / Products FO LDX PAPERS

McKeone R, Wikstrom M, Kiel C, Rakoczy

P RO D U CTS EP. "Assessing the correlation between
mutant rhodopsin stability and the
severity of retinitis pigmentosa.” Mol
Vis.. 201420:183-99
2014
Technology Overview
Kiel C, Serrano L "Structure-energy-
based predictions and network modelling
of RASopathy and cancer missense
mutations.” Mol Syst. Biol. 2014;10727.
2004

Loop

De Baets G, Van Durme J, Reumers J, et
al. "SNPeffect 4.0: on-line prediction of
molecular and structural effects of
protein-coding variants,’ Nocleic Acids
Res.. 2012,40(Database issue) 09359,

Fold

Simdas-Correia J, Figueiredo J, Lopes R,
et al. "E-cadherin destabilization
accounts for the pathogenicity of
missense mutations in hereditary diffuse
gasiric cancer.' PLoS ONE
2012;7(3):e33783

2012

\nterpres;y

YasaraPG

Kimberiey FC, van der Sfoot AM,

Guadagnoli M, et al, *The design and

characterization of receptor-selective

under development ., <1, M. (o
2012,287(44):37434-46.

2012

The FOIdX SUlte Van Durme J, Delgado J, Stricher F,

The FoldX Suite builds on the strong fundament of advanced protein design features already impl d in the oldest Serrana L, Schymicowitz J, Rousseau ¥, "A
FoldX versions and integrates new capabilities: loop reconstruction (LoopX) and peptide docking (PepX). The Suite also graphical interface for the FoldX

forcefield.” Bloinformatics
features an improved usability thanks to a new boost Command Line Interface. 011270217112

http://foldxsuite.crg.eu/products#foldx



Experimental validation of the role of kinetic parameters in MCF7

cells (weak feedback)
Experimental design of mutants that introduce kinetic perturbations

koff

kon K Association rate constant

/ Dissociation rate constant

(Dissociation constant)

E.Q.:
T Increase k,,: improve electrostatic surface complementarity; ‘electrostatic steering’

S

k)

i;,_r‘: > : P

; i
4 4
J) NG
2 ‘ o
2

Kiel et al., PNAS, 2004

1 Increase k4 mutate hot-spot residues in the interface



I. Kinetic perturbations and network topology

Summary of the protein mutant design
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Kiel & Serrano, Sci Signal, 2009
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I. Kinetic perturbations and network topology

Analysis of all mutants in RK13 cells (luciferase activity assay)

AB5K (lower kz) R89L (higher k)
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Correlation between predicted changes in k., is very high, while
correlation with affinity (AG) is poorer
Kiel & Serrano, Sci Signal, 2009



I. Kinetic perturbations and network topology

Results from network model for designed mutants
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Confirms experimental findings:
Mutant with 4 time lower k,,, and 4 times lower k; (same Ky) has less predicted
luciferase activity (and opposite for mutant with 4 times higher k. /K.«)

» Experiments and simulations suggest that association rate constants of Ras-Raf complex
formation are important for signaling

Kiel & Serrano, Sci Signal, 2009



