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Factors that could affect signaling 



Quantitative information in protein-protein interaction (PPI) 

networks

Qualitative PPI networks Quantitative PPI networks

Considering protein abundances and affinities/ 

kinetic constants
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The effect of affinities, kinetic constants and 

network topology in PPI networks

Feedbacks

I. Kinetic perturbations and network topology

kon
koff kon

koff

Kinetic 

perturbations

Kiel & Serrano, Science Signal, 2009



Ras CRaf

Epidermal growth factor (EGF) activates the RAS-RAF-MEK-

ERK pathway

I. Kinetic perturbations and network topology



Different network ‘wiring’ /feedbacks causes the different 

behaviour

I. Kinetic perturbations and network topology

Sustained

response

HEK293 cells RK13 cells

Transient 

response

Kiel & Serrano, Sci Signal, 2009



A simple computer model of ERK activation in HEK293 and 

RK13 cells
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I. Kinetic perturbations and network topology

No negative feedback 

from ERK-P to Sos1 in 

the RK13-like model

 Good agreement of experiment and model predictions

Kiel & Serrano, Sci Signal, 2009



Model predictions: different cell type-specific wiring results in 

different responses to mutations with affinity perturbations

Weak feedbackStrong 

feedback

Ras

Raf

No significant changes Significant differences 

Subtle affinity changes

kD= 
kon

koff__
kon

koff

I. Kinetic perturbations and network topology

Kinetic 

perturbations

 Mutations can have 

different cell type 

(patient!)-specific 

effects

Kiel & Serrano, Sci Signal, 2009





The effect of protein abundance 

perturbations and interaction competition in 

PPI networks

Mutually exclusive interface 

interaction, XOR

II. Protein abundances and competition



How could interaction competition and protein concentration 

affect downstream signaling?

Some proteins will use similar binding 

surfaces for interaction with other 

molecules: ‘mutually exclusive 

interactions’/ ‘XOR’

Signaling complexes: > 300 partners 

for one protein??

II. Protein abundances and competition



RAS

kD~1 mM kD~100 nM

Pathway 1

Pathway 2

Pathway 3

Pathway 4

Pathway 5

kD~3 mM

kD~20 nM

kD~1 mM

In a simple world:

concentration and 

kD will determine the 

signaling output

II. Protein abundances and competition

How could interaction competition and protein concentration 

affect downstream signaling?

Signaling complexes: > 300 partners 

for one protein??

Changes in concentration (ie mutations at 

promoters, enhancers etc..) could have an effect 

in signalling



A bioinformatics tool to distinguish mutually exclusive from 

compatible interactions in large-scale PPI

II. Protein abundances and competition

Yang et al, Bioinformatics, 2012

SAPIN (structural analysis of 

protein interaction networks)

webserver

http://sapin.crg.es/
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Experimental methods to quantify protein 

abundances, affinities, and kinetic constants

III. Quantitative experimental methods: protein abundances and interactions



Why proteomics in times of deep RNA sequencing?

Two main aims: IDENTIFICATION and QUANTIFICATION

 mRNA does not translate1:1 into protein; keywords: 

(i) translation efficiency, 

(ii) mRNA stability, 

(iii) protein stability, 

 Posttranslational modification (PTMs) of proteins, e.g. phosphorylation

Two main techniques: MASS SPECTROMETRY and ANTIBODY-BASED

III. Quantitative experimental methods: protein abundances and interactions



30,000 coding genes per cell

Alt.splicing: 2-3 x 30,000

= 90,000 proteins

Post-translational modifications

> 10 x 90,000

= 900,000 proteins

Peng and Gygi, JMS, 2001

High complexity of the proteome 

III. Quantitative experimental methods: protein abundances and interactions



Anderson and Anderson, MCP, 2002

High dynamic range of the proteome 

III. Quantitative experimental methods: protein abundances and interactions



 Address problem of cellular complexity by fractionation, e.g. liquid chtromatography

 Address problem of cellular dynamic range by better and better (and better…) mass 

spectrometers…

Ahrens et al, 2010

Enzymatic 

cleavage

Peptide 

separation

MS1

MS2

Ionization

Dissociation 

into 

fragments

Peptide

matching

Protein

matching

Protein identification by mass spectrometry

III. Quantitative experimental methods: protein abundances and interactions



• R. Aebersold lab

• M Mann lab

Beck et al, MSB, 2011

~10,000 proteins quantified

Nagaraj et al, MSB, 2011

10,255 proteins quantified

Human deep proteome mapping

III. Quantitative experimental methods: protein abundances and interactions



Many proteins are identified with peptides belonging to more than one protein (e.g. isoforms)

2014 Kuster lab2014 Pandey lab

Human deep proteome mapping: where are we now? Complete?

Ezkurdia et al, J Proteome Res,  2014

III. Quantitative experimental methods: protein abundances and interactions



Uhlen et al, Science, 2015

 Tissue-based map of the human 

proteome

 44 major tissues and organs in the 

human body 

 24,028 antibodies corresponding to 

16,975 protein-encoding genes

Antibody-based proteomics: only semi-quantitative abundances

III. Quantitative experimental methods: protein abundances and interactions



Quantitative Western blotting 

Kiel et al, J Prot Res, 2014

Protein standards: expression, purification 

and quantification
Summary statistic for quantitative Western 

blotting of 198 ErbB-related proteins

III. Quantitative experimental methods: protein abundances and interactions



Combining different quantitative approaches to quantify 198 

proteins in the ErbB signaling pathway

Kiel et al, J Prot Res, 2014

Protein standards

Quantitative Western blotting 

and quantitative FACS

Targeted mass spectrometry 

(MS)
Fractionation + shot-gun mass 

spectrometry (MS)

AQUA peptides 
AQUA peptides 

Cell lysate Cell lysate

MS

MS

Cell lysate

Western FACS

Beads with 

known surface 

binding capacity

Fractionation

 SRM has a higher sensitivity compared to quantitative western blotting (but some proteins are only detected by Western 

blotting)

 Problem with isoforms and protein families: as a consequence of frequent gene duplication events in mammals, often similar 

proteins (e.g. AKT1 and AKT2) cannot be distinguished using the peptides detected by MS. > they can only be assigned to a 

protein group/ family

III. Quantitative experimental methods: protein abundances and interactions



The challenge: 

 most in vivo techniques are high-throughput, but do not provide affinities (only 

qualitative binding detection)

 in vitro techniques can provide affinities and kinetic constants, but are not high-

throughput methods 

Measuring protein interactions in vivo and in vitro

Piehler, Curr Opin Struct Biol, 2005

III. Quantitative experimental methods: protein abundances and interactions



Measuring protein affinities in vitro requires the expression and 

purification of proteins (e.g. using bacteria)
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Large proteins are often not soluble: expression 

and purification of protein domains  

III. Quantitative experimental methods: protein abundances and interactions



Two main methods to measure affinities and kinetic constants

III. Quantitative experimental methods: protein abundances and interactions

Microscale thermophoresis Surface plasmon resonance

Jerabek-Willemsen et al, J Mol Struct, 2014

H20

Reoriented H20Binding

Amine-covalent 

labelled RBDs 

(fluorophore)

+

Ras WT and Mut

(serial dilutions)

Fluorescence signal (depends on 

charge, size and hydration shell

 Provides only the affinity in 

equilibrium (Kd value), but not 

kinetic constants

Kd = 
[A] x [B]

[AB]

Kastritis et al, 2012

 Provides kinetic constants 

(kon and koff)
Kd = 

koff

kon

Optical method to measure 

the refractive index near a 

sensor surface



The effect of abundance variation at XOR network motifs

II. Protein abundances and competition

 The output/ function depends on both, network structure and abundance: we need to 

know the network very well to understand

Kiel et al, Sci Signal, 2013



Competition at the Ras XOR node 
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II. Protein abundances and competition

Kiel et al, Sci Signal, 2013



Experimental testing of competition at the Ras node

U RIN1

5 min HRG

U RIN1

5 min EGF

HEK293

U RIN1

5 min EGF
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 Alterations in the abundance of one of two hub-binding partners 

affected downstream signaling

II. Protein abundances and competition

Kiel et al, Sci Signal, 2013

Expression of RIN1 in MCF-7 and HEK293 cells 

decreases CRAF, MEK, and ERK activation



Qualitative and quantitative effects of 

disease mutations

Disease mutation

IV. Rewiring through disease mutations



General concepts of interaction (‘edge’) rewiring

Proteins

Domains and linear 

motifs

or

Kiel & Serrano, 2014 

‘enedgetics’

Mutation 

affecting folding
Protein abundance 

/ folding

Protein abundance 

/ interaction competition

Kiel et al, 2013

Romano (Kolch) et al, 

2014

Protein abundance 

changes 

Mutation affecting 

binding on the surface 

of one domain:

Zhong (Vidal) et al, 2009 

‘edgetics’

-
Alternative splicing

IV. Rewiring through disease mutations



Examples how missense mutations can affect the network: a 3D 

structural perspective 

Gain in signaling through release of autoinhibitionClass 1a

PTPN11 (2SH2)

Kiel & Serrano, Mol Sys Biol, 2014

IV. Rewiring through disease mutations



Active 

site

Active 

site

Gain in signaling through destabilizing 

mutation in active site: release of 

autoinhibition in structural segments

Class 1b

BRAF 

(4EHE)

IV. Rewiring through disease mutations

Kiel & Serrano, Mol Sys Biol, 2014

Examples how missense mutations can affect the network: a 3D 

structural perspective 



Inhibitor Inhibitor

Gain in signaling through loss  of 

interaction with inhibitors/ 

deactivating proteins

Class 2

Complex of14-3-3 with 

peptide of Raf1 (3IQJ)

IV. Rewiring through disease mutations

Kiel & Serrano, Mol Sys Biol, 2014

Examples how missense mutations can affect the network: a 3D 

structural perspective 



Class 3 Folding affected (destabilization of 

protein) ; gain in signaling for NF1 and 

RASA1

NF1 

(1NF1)

IV. Rewiring through disease mutations

Kiel & Serrano, Mol Sys Biol, 2014

Examples how missense mutations can affect the network: a 3D 

structural perspective 



Class 4 Gain in signaling through mutation of domains 

involved in membrane recruitment 

SOS1 

(1DBH)

IV. Rewiring through disease mutations

Kiel & Serrano, Mol Sys Biol, 2014

Examples how missense mutations can affect the network: a 3D 

structural perspective 



Class 5 No effect; location on surface

SOS1 

(1DBH)

IV. Rewiring through disease mutations

Kiel & Serrano, Mol Sys Biol, 2014

Examples how missense mutations can affect the network: a 3D 

structural perspective 



Example 1: RASopathy and cancer disease mutations 

V. Examples for quantitative effects in disease networks

 RASopathies are a group of developmental disorders characterized by postnatal 

reduced growth facial dysmorphism, cardiac defects, mental retardation, skin 

defects, musculo-skeletal defects, short stature, cryptorchidism

 RASopathies are caused by germline mutations in genes that encode protein 

components of the Ras/ 12 proteins involved (HRAS, NF1, MAP2K1, MAP2K2, 

RASA1, SPRED1, SOS1, PTPN11, RAF1, KRAS, NRAS, BRAF)

 majority of mutations result in increased signal transduction down the Ras/MAPK 

pathway, but usually to a smaller extent than somatic mutations associated with 

cancer

RASopathies: Developmental syndromes of Ras/ MAPK pathway dysregulation

Somatic mutations

 occur in non-germline 

tissues

 are non-heritable (do not 

affect offspring)

Germline mutations

 present in egg or sperm

 are heritable (all cells 

affected in offspring)
Christina

Kiel
Hannah

Benisty



What are the differences in mutations of the same protein 

causing different disease (e.g. RASopathies or cancer)?

V. Examples: 1. RASopathy vs cancer

 Ras/MAPK syndromes (‘RASopathies’) 

are a class of developmental disorders 

caused by germline mutations 

 Proteins in Ras/MAPK syndromes 

(‘RASopathies’) are also found in cancer

CancerRASopathy

Kiel & Serrano, Mol Sys Biol, 2014



Location of mutations in different domains does not explain the 

difference between RASopathy and cancer mutations

V. Examples: 1. RASopathy vs cancer

‘Edgetics’ does not explain it

Domain localization of mutation

does not explain why a particular 

mutation will cause RASopathy or 

cancer 

domains

Disease 1 Disease 2

Distribution of somatic and germline mutations in 98 

different structural domains and inter‐structural regions

Kiel & Serrano, Mol Sys Biol, 2014



FoldX-based energy calculations of proteins

3D Structural information

Protein design

Schymkowitz et et al, Nucleic Acids Res, 2005

 Total free energy  Interaction energy  Mutagenesis

+ = DG
Relation to affinity: DG = RT ln Kd

A rotamer library to replace the 
20 amino acids

V. Examples: 1. RASopathy vs cancer



Analysis of 956 missense mutations in RASopathies and cancer 

based on structural information and FoldX energies

V. Examples: 1. RASopathy vs cancer

Kiel & Serrano, Mol Sys Biol, 2014



Analysis of 956 missense mutations in RASopathies and cancer: 

high structural coverage

V. Examples: 1. RASopathy vs cancer

Kiel & Serrano, Mol Sys Biol, 2014



Multiple effects of a mutation even for the same protein/ protein 

class

V. Examples: 1. RASopathy vs cancer

Kiel & Serrano, Mol Sys Biol, 2014



Cancer mutations tend to have higher destabilization values (on 

average) 

V. Examples: 1. RASopathy vs cancer

Kiel & Serrano, Mol Sys Biol, 2014



Quantitative effects on protein stability, or activity could explain in 

some cases the different phenotype: cancer or RASopathy

V. Examples: 1. RASopathy vs cancer

Simulation of Ras activation 

‘Enedgetics’: quantitative 

edge effects

‘Edgetics’ + energies = 

‘enedgetics’ 

Quantitative effects on protein 

stability, activity, or folding 

explains in some cases the 

different phenotype

Kiel & Serrano, Mol Sys Biol, 2014



Compensatory effects of mutations on different interaction 

partners 

V. Examples: 1. RASopathy vs cancer

NRAS G60E

D
D

G
 F

o
ld

X
 (

k
c
a

l/
m

o
l)

Kiel & Serrano, Mol Sys Biol, 2014



Conclusions example 1: RASopathy vs cancer

V. Examples: 1. RASopathy vs cancer

 Combined network‐based and structural 

analyses show that quantitative changes 

rather than all‐or‐none rewiring underlie 

the difference between RASopathy and 

Cancer mutations.

 A systematic analysis of 956 RASopathy and cancer mutations based on 

structures and energy predictions is presented.

 Even for the same gene, different disease‐causing mechanisms exist 

depending on the type of mutation.

 Energy changes are higher for cancer compared to RASopathy mutations.

 In some cases, RASopathy mutations show compensatory changes that, as 

predicted by network modelling, result only in minor pathway deregulation.



Example 2: Rhodopsin disease mutations 

V. Examples for quantitative effects in disease networks



Rhodopsin: involved in light perception in rod outer segment 

V. Examples: 2. Rhodopsin mutations

Understanding disease mutations in rhodopsin, a 

common cause of retinitis pigmentosa (RP) 



Analysis of 103 mutations in rhodopsin linked to RP

V. Examples: 2. Rhodopsin mutations

Is there a correlation between energy changes of rhodopsin missense-mutations and 

their potential affect on clinical severity of Retinitis Pigmentosa (RP)?

+

?
→
correlation

Energy changes

Rakoczy et al, J Mol Biol, 2011



Several consideration for  studying the effect of missense 

mutations in rhodopsin 

V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

1) Rhodopsin is a membrane protein: can we use 

FoldX, a design algorithm developed for soluble proteins, 

for predicting the effect of mutants for a membrane 

protein?

Region I mutants (intradiscal):

 YES, not in membrane 

Region II mutants (cytoplasm):

 YES, not in membrane

Region IV mutants (residues pointing outside and facing 

the lipid bilayer):

NO, a mutation from hydrophobic to polar residue could 

be predicted favorable by FoldX, but would prevent 

proper integration of rhodopsin into the membrane. 



For analyzing Region IV mutants (residues pointing outside and 

facing the lipid bilayer): use a different algorithm

V. Examples: 2. Rhodopsin mutations

This algorithm is based on experimental results, 

in which systematically designed 19-residue long 

amino acid sequences have been expressed and 

tested in-vitro for TM insertion.

Linking amino acid sequence to 

membrane insertion efficiency

Hessa/ von Heijne et al, Nature, 2007



V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

Several consideration for  studying the effect of missense 

mutations in rhodopsin 

1) Rhodopsin is a membrane protein: can we use FoldX, a 

design algorithm developed for soluble proteins, for predicting 

the effect of mutants for a membrane protein?

Region I mutants (intradiscal):

 YES, not in membrane 

Region II mutants (cytoplasm):

 YES, not in membrane

Region IV mutants (residues pointing outside and facing the 

lipid bilayer):

NO, a mutation from hydrophobic to polar residue could be 

predicted favorable by FoldX, but would prevent proper 

integration of rhodopsin into the membrane. 

Region V mutants (residues facing inside the helices): 

NO, FoldX desolvation effect is possibly not appropriate since 

the reference state in soluble proteins is water and in 

membranes, lipids. 

BUT: VanderWaal’s clashes of course will be the same for a 

soluble or membrane protein. To avoid issues related to the 

proper calibration of the desolvation effect for buried residues 

in membrane proteins for residues in Region V we determined 

both the overall change in energy and the Vander Waals’ 

clashes. 



V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

2) Retinal-free Rhodopsin is unstable: If an amino acid residue contributes to binding a mutation 

might not necessarily lead to destabilization (energies of retinal not calibrated) → We need to identify 

all residues in the retinal binding area, and treat the results of mutations involving these residues, 

separately.

Several consideration for  studying the effect of missense 

mutations in rhodopsin 



V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

3) Rhodopsin is involved in other functions (e.g. binding to partner proteins): A mutation might cause 

disease but not be predicted destabilizing with FoldX → We need to know as much as possible about 

rhodopsin function.

Several consideration for  studying the effect of missense 

mutations in rhodopsin 



Five structures of bovine rhodopsin were selected (<2.6 Å) for 

mutagenesis and protein stability analysis using FoldX

V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011



FoldX energy results and involvement in other function

V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

Mutants that are destabilizing (DDG > 1.6 kcal/ mol)



FoldX energy results and involvement in other function

V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

 Mutants that are not destabilizing, are usually involved in other functions, which can 

explain their disease-causing effect.



FoldX calculations and comparing with phenotypic data

V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011



Correlation of daytime vision loss and night blindness with FoldX

energy calculations

V. Examples: 2. Rhodopsin mutations

Rakoczy et al, J Mol Biol, 2011

Different therapies should be used for the three different types of mutations

Disulphide bridges

Folding mutants

Retinal binding



Conclusions example 2: Rhodopsin mutations

Most important conclusion: 

 a high level of functional understanding was 

necessary for our analysis and the observed 

energy-phenotype correlation.

 The majority of the mutants is located within the hydrophobic core of the 

corresponding proteins and are therefore likely to cause misfolding.

Quantitative predictive assessment for the severity and onset of the 

disease:

 For folding mutations where sub-typing was available we found a significant 

correlation between FoldX energy changes and both the average onset age of 

night-blindness, daytime vision loss and visual acuity. 

V. Examples: 2. Rhodopsin mutations



Example 3: BRAF mutations in cancer. Why V600E?

V. Examples for quantitative effects in disease networks



The most common BRAF mutation is V600E and induces 

constitutive kinase activation

V. Examples: 3. Why BRAF V600E?

Patients are treated with a 

BRAF kinase inhibitor 

Shall we only treat patients which harbour V600E mutations or also patients with non-V600E 

mutations?



Catalytic activity of kinases is usually tightly controlled

V. Examples: 3. Why BRAF V600E?

• phosphorylation

• additional domains or subunits of the kinase

• scaffolding proteins

• kinase dimerization

Mechanisms for kinase activation are:

Mutations in kinases (e.g. BRAF) can cause constitutive kinase activation and 

over activation of downstream signaling, which can cause cancer



Kinases are activated through mutations in the activation loop 

(activation segment)

V. Examples: 3. Why BRAF V600E?

Taylor & Kornev, TIBS, 2011

• phosphorylation in the 

activation segment causes 

structural rearrangements of 

the activation segment and 

the aC helix. This reorients 

the DFG loop resulting in 

activation of the kinase



BRAF kinase activation though oncogenic mutations (e.g. 

V600E)

V. Examples: 3. Why BRAF V600E?

P-Loop
Nucleotide-Binding Pocket

Catalytic Loop

DFG Motif

Activation Loop

Activation loop residues: form strong hydrophobic interactions with the P-loop in the inactive 

conformation of the kinase, locking the kinase in its inactive state until the activation loop is 

phosphorylated, destabilizing these interactions with the presence of negative charge. This triggers the 

shift to the active state of the kinase. Specifically, L597 and V600 of the activation loop interact with G466, 

F468, and V471 of the P-loop to keep the kinase domain inactive until it is phosphorylated

V600E mimics the negative charge of the neighbouring phosphorylated Thr599-P



Focus on the position Val600 in the kinase BRAF

V. Examples: 3. Why BRAF V600E?

Kiel et al, Elife, 2016

V600 is buried in a hydrophobic pocket formed by the activation segment (AS) 

and the aC helix

Differences in mutation 

frequencies: a quantitative effect?



The V600E mutation causes a high destabilization of the inactive 

state (aC helix/AS hydrophobic pocket)

V. Examples: 3. Why BRAF V600E?

Kiel et al, Elife, 2016

Destabilization of 

inactive state

No destabilization of active 

state (data not shown)



Distinguishing driver from passenger mutations

V. Examples: 3. Why BRAF V600E?

Kiel et al, Elife, 2016

V600K, D, and R 

have very similar 

destabilizing energies 

> cancer driver

V600A, M, and L are 

not very destabilizing 

> cancer passenger

Fitness??



V600G behaves more like a RASopathy mutation

V. Examples: 3. Why BRAF V600E?

Google search for “V600G BRAF CFC syndrome”: V600G found 

as a RASopathy mutation

“enedgetics”
Cancer mutations tend to have higher 
destabilization values (on average) 

Kiel  & Serrano, 2014



Different energy thresholds for germline and somatic mutations? 

‘Condition-dependent phenotypes’

V. Examples: 3. Why BRAF V600E?

V600E germline: developmental lethal

V600G germline: non-lethal, but developmental defects 

(CFC syndrome)

V600E somatic: cancer driver

V600G somatic: cancer passenger (non-disease 

causing)

Phenotype: lethal

Phenotype: Developmental defects

Phenotype: Cancer

Phenotype: normal (or fitness/ or together with other mutations)

Condition 1
(germline 

mutation)

Condition 2
(somatic 

mutation)



Why different cancer frequencies for V600E, V600D and V600K?

V. Examples: 3. Why BRAF V600E?

V600K, D, and R have very similar destabilizing energies

Why is V600E the by far most frequent mutation?

aa frequency

Glu 15474

Lys 164

Arg 36

Met 25

Ala 22

Asp 20

Gly 11

Leu 2



V. Examples: 3. Why BRAF V600E?

V600E: 15474 frequency

V600D: 20 frequency

Distinguishing cancer driver from passenger mutations:

Is V600E a driver mutation and V600D a passenger mutation?

On the molecular level: Glu and Asp have similar biochemical 

properties

Glu Asp

Why different cancer frequencies for V600E, V600D and V600K?



V. Examples: 3. Why BRAF V600E?

V600E: GAG

V600K: AAG

V600R: AGG

V600D: GAC/T

Why different cancer frequencies for V600E, V600D and V600K?

 The higher mutation frequency of V600E 

compared to V600D can be explained 

based on the number of nucleotide 

substitutions needed: V600D requires 2 

nucleotide substitutions



Experimentally validate the effect of BRAF mutations by 

monitoring downstream MEK activation (HEK293 cells)

V. Examples: 3. Why BRAF V600E?

Kiel et al, Elife, 2016

Day1: 

Seed HEK293 

cells

Day2: 

Transfect flag-

BRAF WT and 

mutants

Day3: 

Lyse cells and 

Western blot



V. Examples: 3. Why BRAF V600E?

Experimentally validate the effect of BRAF mutations by 

monitoring downstream MEK activation (HEK293 cells)

 V600H (requires 3 nucleotide substitutions) is as active as 

V600E, but NOT found in cancer.  Similarly L597Y is not 

found in rasopathy patients.



Why are no mutations at other positions in the hydrophobic pocket - in a 

different position to Val600 - found frequently mutated in cancer?

V. Examples: 3. Why BRAF V600E?

Kiel et al, Elife, 2016

FoldX prediction: other mutations in the hydrophobic pocket destabilize the 

pocket and may thereby release the AS, would also affect the folding of the 

inactive and/or active kinase

 Experimentally: lower BRAF expression levels (and 

MEK phosphorylation) 

Day1: 

Seed HEK293 

cells

Day2: 

Transfect flag-

BRAF WT and 

mutants

Day3: 

Lyse cells, 

fractionate and 

Western blot

Supernatant 

= soluble 

fraction

Pellet = 

insoluble 

fraction



Conclusions/ Wrap up

• Quantitative information is important to consider in PPI networks; however, it 

is often difficult to address these quantities experimentally. 

• Protein quantification is not a solved problem; especially in mammalian cells, 

because of the problem of shared peptides for isoforms and splice variants

• It is impossible to measure binding affinities and kinetic constants in a high-

throughput manner (protein expression and purification needed)

• The effect of mutations can be assessed in a quantitative manner using 

protein design tools, provided 3D structural information is available

• Structural analysis of mutations could suggest for different therapies for 

mutations happening at different regions of the protein

• In GWAS analysis the number of base changes required for a mutation 

should be considered in the analysis.  Two mutations with the same 

frequency, one could be neutral and the other deleterious if the first one 

requires on base change and the second one, two.   

VII. Discussion
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Conclusions example 3: Why BRAF V600E?

 The results underscore the 

importance of considering changes at 

both the DNA and protein level when 

attempting to understand why certain 

cancer-causing mutations are more 

common than others.

 BRAF mutation frequencies depend on the equilibrium between the 

destabilization of the hydrophobic pocket, the overall folding energy, the 

activation of the kinase and the number of bases required to change the 

corresponding amino acid.

Why BRAF V600E?

 V600E is the only single nucleotide substitution (Asp, Lys, and Arg, require two 

bases substitutions) that opens the AS through destabilization of autoinhibitory

interactions, without significantly impairing the folding of the inactive or active 

kinase domain. 

V. Examples: 3. Why BRAF V600E?



VI. Summary tools & websites

Quantitative PPI networks



Protein abundances

VI. Summary tools & websites

http://pax-db.org/



Affinities and kinetic constants 

VI. Summary tools & websites

https://www.bindingdb.org/bind/index.jsp



General ‘numbers’ in biology

VI. Summary tools & websites

http://bionumbers.hms.harvard.edu/



Protein structures

VI. Summary tools & websites

http://www.rcsb.org/pdb/home/home.do



3D structures of protein interactions

VI. Summary tools & websites

http://interactome3d.irbbarcelona.org/



3D structures of protein interactions/ mapping of disease 

mutations

VI. Summary tools & websites

http://dsysmap.irbbarcelona.org/



Protein design

VI. Summary tools & websites

http://foldxsuite.crg.eu/products#foldx



Experimental design of mutants that introduce kinetic perturbations

Experimental validation of the role of kinetic parameters in MCF7 

cells (weak feedback) 

I. Kinetic perturbations and network topology

Kd =
koff

kon

Affinity

(Dissociation constant)

Dissociation rate constant

Association rate constant

E.g.: 

↑ Increase kon: improve electrostatic surface complementarity; ‘electrostatic steering’

Kiel et al., PNAS, 2004

↑ Increase koff: mutate hot-spot residues in the interface

RalGDS-wt



Summary of the protein mutant design

-

-
-

A85K: koff

-

R89L: koff

-

++

+

+

Ras surface negative Raf surface positive

I. Kinetic perturbations and network topology

Kiel & Serrano, Sci Signal, 2009



Analysis of all mutants in RK13 cells (luciferase activity assay)

Correlation between predicted changes in kon is very high, while 

correlation with affinity (DG) is poorer

I. Kinetic perturbations and network topology

Kiel & Serrano, Sci Signal, 2009



Results from network model for designed mutants

Confirms experimental findings:

Mutant with 4 time lower kon and 4 times lower koff (same KD) has less predicted

luciferase activity (and opposite for mutant with 4 times higher kon/koff)

 Experiments and simulations suggest that association rate constants of Ras-Raf complex 

formation are important for signaling

I. Kinetic perturbations and network topology

Kiel & Serrano, Sci Signal, 2009


