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Machine learning vs Statistics

From R-Bloggers (www.r-bloggers.com )

Machine learning Statistics

network, graphs model

weights parameters

learning fitting

generalization test set performance
supervised learning regression/classification
unsupervised learning density estimation, clustering
large grant = $1,000,000 large grant = $50,000

nice place to have a meeting: nice place to have a meeting:
Snowbird, Utah, French Alps Las Vegas in August




The potential in large
prospective biobank cohorts

Sample sizes of 20000 — 500000

Availability of molecular data: DNA genotyping,
transcriptomics, metabolomics, etc.

Follow-up information from electronic health
records, national registries, etc.

Biobank-based studies are paving the path
towards the implementation of personalized
medicine!
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Biobank cohorts have brought a

new erd...
Conventional Genetic epidemiology
epidemiology based on biobanks
« Sample sizes: 1000+ « Sample sizes: 10000+
« Studies on lifestyle- « Studies on molecular
related risk factors on biomarkers, sometimes
diseases and mortality combined with lifestyle
. Almost always subject to factors
unmeasurable « The effects of genetic
confounding predictors are not

confounded in the
traditional way

« Possible confounding by
population structure



University of Tartu (EGCUT)

» About 52000 Gene Donors (GD) recruited in 2002-2010
« Age at recruitment: 18-103

Estonian Biobank
Estonian Genome Center,

« Recruited individuals per year:
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EGCUT cohort vs Estonian population

Estonian population by age group (01.01.2008)

15000

10000

5000

0

5000

10000
|

15000
|

85+
80
75
70
65
60
55
50
45
40
35
30
25

it

Age—!

O EGCUT males
B EGCUT females
L Estonian population

700 500 300 1951\0‘ -100 300 500 700

2N
No of gene donors by age groOp“ N
estonian genome center
university of tartu

BRI E BEN U IR



A prospective cohort of 50000+ partlmpantf
(,,Gene Donors")

51795 GD:
« 17795 males, 34000 females
 81% ethnic Estonians

* About 5% of the Estonian adult population belong to
the cohort

« Largest epidemiological cohort in Estonia (and in the
Baltic States)

« Follow-up for mortality, incident diseases, etc via
registry and electronic health record linkages:
median follow-up time by January 2016: 7.2 years

N
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Follow-up studies: statistical aspects

* Follow-up studies usually gather time-to-event data: one is
iInterested in outcome events that occur after recruitment of
study subjects.

« The analysis is complicated by censoring — by the end of
follow-up, the outcome event has only occurred for a subset
of participants.

« Analysis depends on the choice of time scale (study time,
calendar time, age)



Example: follow-up of 60 individuals of age 75+ at the
Estonian Biobank cohort on the calendar time scale
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Example: follow-up of 60 individuals of age 75+ at the
Estonian Biobank cohort on the study time scale

died censored
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Example: follow-up of 60 individuals of age 75+ at the
Estonian Biobank cohort on the age scale
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Genetic predictors for
survival/mortality — why needed?

» Better understanding of biological
mechanisms

« Causality of risk factors — (Mendelian
randomization and other |V approaches)

» Lead to more efficient prevention!



Mortality studies in population-based
biobank cohorts — sampling and
timescales

* Recruitment time is not a clearly defined
event in participant’s lifecourse.

* Time since recruitment is not a meaningful
timescale



Biobank cohorts

« Usually individuals are recruited at different
timepoints in real time
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Standard survival analysis approach

« At each event time, compare the individual who had
an event with the individuals at risk

id
evlsnt at time t*, individuals 1
1 and 2 (but not 3 or 4)
- are at risk
at|risk
2 °
3 I——e
4 o
t*
time
Start Maximum follow-

R: Surv(time, event)



Age as time scale

« At each event time, compare the individual who had
an event with the individuals who were still at risk
while being at the same age

id
event
s 9
5 at risk )
3 — o
4
18 AGE 100

R: Surv(age_entry, age_exit, event)



Genetic predictors affect from birth on,
should we start the age scale at 0?

id
event
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Genetic predictors affect from birth on,
should we start the age scale at 0?

« Beware of left-truncation! (high-risk subjects are less likely to
survive until potential recruitment time, if an individual is
recruited at old age, he/she is likely to be at low risk)

Not observed (was not able to enter the cohort)!
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Biobank recruitment and follow-up
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Observed follow-up times on
age scale
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Most common analysis method: the
proportional hazards model

The hazard function:

A(6) = lim P(t < T <t+dt|T > t)

Interpretation: probability (,risk®) of the event occurring at the moment t for the
ones at risk at time t.

Baseline hazard
(the same for
everyone)

Hazard for an individual with Covariate effects

covariates X, ..., X,

l
h(t|Xy, ..., Xp) = ho(t)eX1Prt+XiBr

f— ho(t) X eXLBlX cee X eXk:Bk

...Is a multiplicative model for hazard



Partial likelihood for the Cox model

To estimate the parameters, we need to maximize:
d "
[ 1—[ @)
j=1 ZkER(Tj) l/)(k)

Where ith individual had an event (died) at time z; and
R(7;) is the set of individuals at risk at time t;

And Y(i) = eXubrt+Xkibi

Thus selecting a different at-risk set R(z;) may result in
different estimates



Results of a simulation study (true HR=2)
Estimated Hazard Ratios (with 95% CI) using different time scales

Time scale: follow-up

adj for age
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Including the ones not yet under follow-up in the risk set, creates upward bias!



But...simulation when HR is small (HR=1.05)
Estimated Hazard Ratios (with 95% CI) using different time scales

Time scale: follow-up Time scale: age Time scale: age
adj for age left-truncated since birth
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Using age since birth as timescale leads to highest power (but small bias)!



But...simulation when HR is small (HR=1.05)

Estimated Hazard Ratios (with 95% CI) using different time scales

Time scale: follow-up

adj for age

Outcome in R;

Time scale: age
left-truncated
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Using age since birth as timescale leads to highest power (but small bias)!



Genetic predictors for mortality —
more challenges in biobank data

» Biobank cohorts are relatively new

— Problem: no of cases is often low — heavy
censoring!

— One possible solution: select cases and
controls for genotyping, using case-cohort or
nested case-control sampling

 Alternative: use data on parental survival



What happens if you use parental data?

Subject’s genotype X is coded as the number of effect alleles:
X=al+a2

where a1l is received from one parent and a2 from the other

Parental genotypes X1 and X2 consist of the allele transferred
to the child and another allele that is not transferred:

X1 = al + bf X2 =a2 + b2

We use parental survival time (T1 or T2) and X (instead of X1
or X2) as a covariate!

Thus cor(X,X1) = cor(X,X2) = 0.5 and the parameter
estimates are about half of the original parameters.

(Estimated HR = approx. square root of the original HR)



Some simulations:

Individual survival Parental survival Individual survival Parental survival
(1.7% have died) (35% have died) (18% have died) (50% have died)
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Using parental survival will lead to better power if the parental
event rate is at least 4 times higher than individual event rate!



Genetic predictors for mortality —
methodological approaches?

Genome-wide Association Study (GWAS) for
overall survival?

« Standard approach: Cox proportional hazards
regression

« Complication: the algorithm is slow (e.g for a
dataset of size >30000 individuals x 30000000
SNPs)



A two-step Cox modeling approach

* Fit a Cox model with non-genetic preditors
h(x) = ho(x)eY1Z1+"'+Yka’

« Calculate Martingale residuals:
M; = 6; — AO(Tl.)eV1Z1+'“+Vka

With §; - censoring indicator, A,(7;) - estimated baseline
cumulative hazard.

Martingale residuals are linearly associated with omitted
covariates, thus...

* Run a linear regression GWAS on the martingale
residuals to identify associated SNPs



-log10 [martingale-residual p-value]

Comparison of p-values from Cox model

and p-values from linear regression for martingale residua

© MAC_dead < 30
© MAC_dead >= 30

-10g10 [Cox model p—-value]
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Some results...

Received 28 Sep 2015 | Accepted 29 Feb 2016 | Published 31 Mar 2016 DOI: 10.1038/ncomms11174 OPEN

Variants near CHRNA3/5 and APOE have
age- and sex-related effects on human lifespan

Peter K. Joshi', Krista Fischer?, Katharina E. Schraut'3, Harry Campbell!, Tonu Esko?*>€ & James F. Wilson'’
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>270000 parental lifespans from the UK Biobank...



How to handle power issues?
(low no of cases)

» Use parental lifespans

« Select samples for genotyping, using a
case-control strategy

— Nested case-control design
— Simple case-control design



Nested case-control design

* For each case, select 2-4 controls that are under
follow-up at the event time (according to chosen time
scale), analyse using conditional logistic regression
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Example of the Estonian Biobank analysis:
effects on overall mortality

Full-cohort model Nested CC-analysis

(n=51621, 3355 events) (n=9317, 3351 events,
3 controls per case)

Variable _|beta | Se | P-value J§ Variable _|beta_|se | P-value_

Years 0.018  0.0011 1*10°/ Years 0.019 0.0014 2*1042
smoking smoking
Educ: -0.40 0.037 2*1028 Educ: -0.38  0.045 2*107°
secondary secondary
BMI>35 0.23 0.057 4*10° BMI>35 0.21 0.069 3*103
T2D 0.43 0.048 11079 T2D 0.46 0.059 2*10'4

CAD 0.22 0.039 1*108 CAD 0.22 0.047 3*10°



Often cases are over-sampled, but this
is not a nested case-control design

« Use sampling weights! (Package ,survey“in R, for
instance) — a simulation study
Frequency weights Sampling weights

Unweighted coxph(...,weights=1/p) svycoxph(..)  (survey)
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Other aspects to consider

* Proportionality of hazards
— The main assumption of the Cox model
— May be violated, if agespan in the cohort is
wide
— Right timescale choice may help

* Are we actually interested in the
proportional hazards model?



Extreme cases and controls: 253 individuals who
died early of cardiovascular causes vs 370 with
long survival, free of coronary artery disease (CAD).

Distribution of CAD genetic risk score quartiles
Early CV mortality (M:<65y, F:<75y) Long CAD-free survival (M:80y+, F:85y+)
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Part li
Genetic (polygenic) risk scores

* Most complex diseases are polygenic —
there is a need for risk predictions that
combine the effects of many variables



Why is genetic risk important?
Different risk factors contributing to the
individual risk of a disease.

@ Genetic risk ® Age
© Environment, lifestyle, other diseases, etc.
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How to measure genetic risk?
Genome-wide association studies (GWAS)

Large-scale association analysis provides insights into the
genetic architecture and pathophysiology of type 2 diabetes

To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis
of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We
identified ten previously unreported T2D susceptibility loci, including two showing sex-differentiated association. Genome-
wide analyses of these data are consistent with a long tail of additional common variant loci explaining much of the variation in
susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related
transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis.

NATURE GENETICS VOLUME 44 | NUMBER 9 | SEPTEMBER 2012

By: A. Morris et al.

ecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis
ing 34,840 cases and 114,981 controls, overwhelmingly of European descent. We



Type 2 Diabetes: what do we know about genetic
risk? Known genetic loci (05/2014)
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Effect estimates (OR, Comparison of cohort-specific and meta-analysis effect estimates
95% CI) from the

large-scale QWAS | rs i —————
meta-analysis and in I% — =1
the Estonian Biobank s I S—
(Estonian Genome rs“?} —
Center, University of Iérsg —=— 1"
Tartu, EGCUT) cohort S .q__f .
(n=10200, incl 1200 % ——T1
12D cases). ¥ Rl

it —=
Effects of single & —~

. 'S =

markers relatively : =l
small — how to & —
combine them to rsﬁ T
one predictor? fgg —=

rsi C *

gl e

rs ———* —* GWAS meta-anal
s = —— EGCUT cohort
I I I I I

0.6 0.8 1.0 1.2 1.4 1.6



Genetic (polygenic) risk scores (GRS)

Calculatedas S = BX; + BX5 + ... + B X,
X,,..., X, - allele dosages for k independent markers (SNP-s),

Bs B, ...

Frequency

Polygenic risk score for type Il diabetes:
histogram of the score in 7462 individuals (Estonian Biobank)
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GRS: questions to address

« Which markers to include?
— Only the most significant one?

— All genome-wide significant markers (p<5*102 in meta-
analysis)
— A larger number of markers

« Optimal weights?
- All equal (allele counts)
- Regression coefficients from GWAS meta-analysis?
- Other weights?



Problem with p-value based selections

One tends to select markers with effect overestimated by

chance.

Estimated beta

True vs estimated betas in a simulated GWAS
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The ,,true GRS"...

The setting:
e K independent markers X;, i = 1...K are genotyped

A subset R(k), k < K of markers having an effect on the
disease risk

An additive polygenic risk score based on a subset of genetic
variants, is defined as:
Weight (true association parameter)

K /.
S, = z I(X; € R(k)) w;X;
i=1 |ndicator (0/1) of whether the ith

marker belongs to the subset of
markers with a true effect

Both R(k) and w; are unknown and need to be estimated!



Doubly-weighted GRS:

We propose a doubly-weighted GRS as

K
dGRS), = z P x BiX;
j=1

\

(logistic) regression

Estimated probability that the jth parameter estimate
marker belongs to the set of k from GWAS
markers with strongest effect

As P; is still estimated from the estimated coefficients $; and

their standard errors, bias due to ,winners curse“ is not
complete removed, but partially corrected for



GRS for Type 2 Diabetes: allele count vs
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Sensitivity
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ROC curves (BMI=25..35)

— age and sex only (AUC=0.59)
— doubly-weighted risk score (0.68)
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Genetic risk score (GRS) for CAD and
cardiovascular mortality in men

Cumulative risk of cardiovascular mortality in men
(age 50-74, 220 cases in 1995 individuals)

— Highest gen.risk score quintile (>80%) ”
— Other risk score quintiles (<80%) —
0.20 '
0.15 —
0.10 —
0.05
0.00

Follow-up time (years)



Extreme cases and controls: 253 individuals who
died early of cardiovascular causes vs 370 with
long survival, free of coronary artery disease (CAD).

Distribution of CAD genetic risk score quartiles
Early CV mortality (M:<65y, F:<75y) Long CAD-free survival (M:80y+, F:85y+)
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Part 3: aspects of causality

Why needed?

« Epidemiology is always seeking for causality:

If an exposure has a causal effect on the
outcome, this means an intervention on
exposure would affect the outcome

AR
estonian genome center
university of tartu



What is a causal effect?

Questions in epidemiology:

Is the exposure (smoking level, obesity, ...)

associated with the outcome (cancer diagnosis,
mortality,...)?

IS not the same question as

Does the exposure have a causal effect on the

outcome?

Statistical analysis will answer the first question, but not
necessarily the second one...



How to estimate causal effects?

First we need to define them!

...for instance, using counterfactual variables:
Y,=Y(X=0) - potential outcome in case of no exposure

Y=Y (X=1) - potential outcome in case of exposure

Y,-Y, -causaleffectof the exposure

Complication: Y, and Y, are never jointly observed in
the same individual



How to estimate causal effects?

Y,-Y, -causaleffectof the exposure

We can observe E(Y|X=1) and E(Y|X=0) - average outcomes in
the exposed and unexposed subpopulations

However, in most cases,

E(Y|X=1) - E(Y|X=0) # E(Y,)- E(Y,)

Main reason: (unmeasurable) confounders



Causal graphs (DAGs)

X — (observed) exposure
Y — (observed) outcome,
U — unmeasured confounders

If U affects both X and, it can
create a correlation between X
and Y even when there is no
causal effect of Xon Y, or it can
bias the estimates of an actual
causal effect



How to estimate causal effects?

One possible solution: randomized study — random allocation of
the exposures

(Random Association between R
R assignment) and Y can only be
observed in case there is
/ a causal effect of X on Y
— thus even when R does

not uniquely determine

X > Y
the exposure, a test of
association between R
and Y is a valid test of

the causal effect

Not all exposures can be randomized!



Can genetics help us? The idea of
Mendelian Randomization

 |dea: genetic determinant of an exposure would

act like random assignment

X

(A genotype
G variable or a

/ genetic score)

> Y

NS

U

|s an association test
between Gand Y a
valid test for a causal

effect?



Example from recent literature: Associated with 17.5% less alcohol intake

Fig 2 Meta-analysis pooled estimates of the association between
ADH1B rs1229984 (A-allele carriers v non-carriers) and coronary heart
disease overall, and stratified by alcohol intake.

Category forcoronary Noof No of cases/ Odds ratio Odds ratio P value
heart disease outcome studies individuals (95% CI) (95% CI)
Overall (all individuals) 46 20259/168731 —a 0.90 (0.84t0 0.96) 0.001
Any or no alcohol intake

Non-drinkers 31 5883/43 029 —_— 0.98 (0.88t0 1.10) 0.095*

Drinkers only 40 10130/107 478 — 0.86 (0.78 10 0.94)
Drinkers subgroup (units/week)

Light (>0 to <7) 32 4686/47 246 — 0.90 (0.79t0 1.02) 0.828*

Moderate (27 to <21) 32 3222/33772 - 0.89 (0.75 to 1.06)

Heavy (221) 29  1919/16 225 & 0.97 (0.76 t0 1.24)

0.70 1 1.25

* Pvalue for heterogeneity obtained from test for trend using meta-regression

Holmes M V et al. BMJ 2014;349:bmj.g4164

©2014 by British Medical Journal Publishing Group



Mendelian randomization (MR)

Parameter of interest: G

— By, the causal effect of X on Y y
gx

Association between X and Y is

Bxy
>
confounded by U X Y
Solution: R AV(
genotype G serves as an instrument —

correlation between G and Y provides U
evidence on f3,,

Untestable assumptions:
no direct effect of G on Y: no association between G and U



MR- how does it work?

With linear models, the following equations Bos G
correspond to the assumed structure: /
X — Y
Y = C, + BXyX + Buy U+ €, E(g[X,U)=0
Bux Buy
and U

X=0C +PByG+BU+g, Ec|GU-0

AsU | G, E(XG) =

¥
and [E(Y|G) = c,+ByEXIG) = c,+ByBu,G |

Cy,Cy - SOMe constants



MR - how does it work?

As G

Bgx
Regressing X on G, we estimate: /
E(XX|G) = ¢, +BgG X >y, y
Regressing Y on G we estimate: A Buy
E(YIG) = ¢, + BBy !

Thus also [5,, is estimable as the ratio of the two estimated
coefficients of G
— the technique is called Instrumental Variables (V)
estimation, where G is an instrument

...provided there is no direct effect of G on Y!



Mendelian randomization example
FTO genotype, BMI and Blood Glucose level (related to Type 2
Diabetes risk; Estonian Biobank, n=3635, aged 45+)

FTO — BM|I ——#Diabetes
U

» Average difference in Blood Glucose level (Glc, mmol/L)
per BMI unit is estimated as 0.085 (SE=0.005)

» Average BMI difference per FTO risk allele is estimated as
0.50 (SE=0.09)

» Average difference in Glc level per FTO risk allele is
estimated as 0.13 (SE=0.04)

» |Instrumental variable estimate of the mean Glc difference
per BMI unit is 0.209 (se=0.078)



A general association structure with
ohe genotype and two phenotypes

Bay

If B4, 7 O, the
genotype G is said
to have a
pleiotropic effect on
Y (violation of the
MR assumption!)



What is estimated in the presence of pleiotropy?

As G
. . o Bay

Regressing X on G, we estimate:
E(X|G) = ¢ +BgG X —2 Y
Regressing Y on G we estimate: ‘m Buy
E(YlG) = Cy + BxyngG + Bgsz U
If we use the IV method, we estimate
BuyBox + Bgy

Box

Thus a MR estimate in the presence of pleiotropy is
biased by 5,/



Can we test pleiotropy?

« Can we fit a regression model for Y, using both X and G as
covariates?

* |n this case we estimate:
E(Y|X,G) = C, + BXyX + BgyG + BuyE(U|X,G)

If X depends on U and G, one can also express U as a
function of X and G!

It appears that:
_ Bux f?fuy ] -_ -))ux.--))uy -
E(Y|X.G) = const+ | By, + - X+ | Bgy — Box >
1 — ‘igx 1 — -")'gx




Can we test pleiotropy?

' BuxBuy | |  BuxBuy
E(Y|X.G) = const+ | By + —— | X+ |Bgy — Bx——3-| G
1- 32, 1- 32,

So:

« Even when there is no causal effect of X, thus
B,,=0, we may still estimate a nonzero (and
significant!) coefficient of X

» Even when there is no pleiotropy (8,,=0), we may
still estimate a nonzero (negative!) coefficient of G!



Conclusions

» Large prospective biobank cohorts make it
possible to discover important pathways leading
to diseases and premature mortality

« Biobank cohorts are different from standard
Jtextbook-datasets” for survival analysis:
timescale choice and sampling design issues
need to be considered

 Instead of single variants, polygenic scores are
more likely to have potential for personalized
preventive medicine



Conclusions I

« Association is not causality - old truth, but still needs
to be reminded while analyzing —omics data

« Mendelian Randomization can be a useful tool to
establish causality, but it relies on statistically
untestable assumptions. The assumptions should be
verified based on external knowledge (biology).

There are no ,forbidden models®, but it is important to
understand the interpretation of model parameters
given realistic assumptions.
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