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The potential in large
prospective biobank cohorts

• Sample sizes of 20000 – 500000

• Availability of molecular data: DNA genotyping, 

transcriptomics, metabolomics, etc.

• Follow-up information from electronic health

records, national registries, etc.

• Biobank-based studies are paving the path

towards the implementation of personalized

medicine!



Biobank cohorts have brought a 
new era…

Conventional
epidemiology

• Sample sizes: 1000+ 

• Studies on lifestyle-
related risk factors on 
diseases and mortality

• Almost always subject to
unmeasurable
confounding

Genetic epidemiology
based on biobanks

• Sample sizes: 10000+

• Studies on molecular
biomarkers, sometimes
combined with lifestyle
factors

• The effects of genetic
predictors are not
confounded in the
traditional way

• Possible confounding by
population structure



Estonian Biobank
Estonian Genome Center,  

University of Tartu (EGCUT)
• About 52000 Gene Donors (GD) recruited in 2002-2010

• Age at recruitment: 18-103

• Recruited individuals per year:
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A prospective cohort of 50000+ participants
(„Gene Donors“)

51795 GD:

• 17795 males, 34000 females

• 81% ethnic Estonians

• About 5% of the Estonian adult population belong to
the cohort

• Largest epidemiological cohort in Estonia (and in the
Baltic States)

• Follow-up for mortality, incident diseases, etc via
registry and electronic health record linkages: 
median follow-up time by January 2016: 7.2 years



Follow-up studies: statistical aspects

• Follow-up studies usually gather time-to-event data: one is
interested in outcome events that occur after recruitment of 
study subjects.

• The analysis is complicated by censoring – by the end of 
follow-up, the outcome event has only occurred for a subset
of participants. 

• Analysis depends on the choice of time scale (study time, 
calendar time, age)



Example: follow-up of 60 individuals of age 75+ at the

Estonian Biobank cohort on the calendar time scale

died

End of follow up
(registry linkage), 
Apr 2014

censored



Example: follow-up of 60 individuals of age 75+ at the

Estonian Biobank cohort on the study time scale

died censored



Example: follow-up of 60 individuals of age 75+ at the

Estonian Biobank cohort on the age scale

diedcensored



Genetic predictors for
survival/mortality – why needed?

• Better understanding of biological
mechanisms

• Causality of risk factors – (Mendelian
randomization and other IV approaches)

• Lead to more efficient prevention!



Mortality studies in population-based
biobank cohorts – sampling and 
timescales

• Recruitment time is not a clearly defined
event in  participant’s lifecourse.

• Time since recruitment is not a meaningful
timescale



• Usually individuals are recruited at different
timepoints in real time

real time
Start 

(time 0)

End of follow-up

censoring
time

tr1 tr2

Observed survival

time: tr2-tr1
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4

id

Biobank cohorts



Standard survival analysis approach

• At each event time, compare the individual who had
an event with the individuals at risk

time
Start 

(time 0)

Maximum follow-

up time

event

at risk

t*

1

2

3

4

id
at time t*, individuals 1 

and 2 (but not 3 or 4) 

are at risk

R:    Surv(time, event)



Age as time scale

AGE18
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• At each event time, compare the individual who had
an event with the individuals who were still at risk 
while being at the same age

event

at risk

R:    Surv(age_entry, age_exit, event)



Genetic predictors affect from birth on, 
should we start the age scale at 0?

AGE0
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at risk

R:    Surv(age_exit, event)



Genetic predictors affect from birth on, 
should we start the age scale at 0?

AGE0

1
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• Beware of left-truncation!  (high-risk subjects are less likely to
survive until potential recruitment time, if an individual is

recruited at old age, he/she is likely to be at low risk)

event

at risk

at risk

Not observed (was not able to enter the cohort)!



Biobank recruitment and follow-up
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Observed follow-up times on 
age scale
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Most common analysis method: the
proportional hazards model

The hazard function:
	���� � lim
�→
��� � � � � � ��|� � ��

Interpretation: probability („risk“) of the event occurring at the moment t for the
ones at risk at time t. 

� � ��, … , �� � �
 � ������⋯��!�!

� �
 � " �����"⋯" ��!�!

…is a multiplicative model for hazard

Hazard for an individual with
covariates ��, … , ��

Baseline hazard
(the same for
everyone)

Covariate effects



Partial likelihood for the Cox model

To estimate the parameters, we need to maximize:

# � 	$ %�&�
∑ %�(��∈*�+,�




-.�

Where &th individual had an event (died) at time /- and 

0 /- is the set of individuals at risk at time /-
And                  % & � 	���1���⋯��!1�!

Thus selecting a different at-risk set 0 /- may result in 

different estimates



Results of a simulation study (true HR=2)
Estimated Hazard Ratios (with 95% CI) using different time scales

Including the ones not yet under follow-up in the risk set, creates upward bias!
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But...simulation when HR is small (HR=1.05)
Estimated Hazard Ratios (with 95% CI) using different time scales

Using age since birth as timescale leads to highest power (but small bias)!
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(mean =1.053)

Power: 0.284 Power: 0.300Power: 0.262
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But...simulation when HR is small (HR=1.05)
Estimated Hazard Ratios (with 95% CI) using different time scales

Using age since birth as timescale leads to highest power (but small bias)!

95%CI not
covering 1

95% CI 

covering 1

HR 
(mean =1.052)

HR 
(mean =1.050)

HR 
(mean =1.053)

Power: 0.284 Power: 0.300Power: 0.262

Outcome in R: 

Surv(age_exit-age_entry,event)

Surv(age_entry,age_exit,event)

Surv(age_exit,event)



Genetic predictors for mortality –
more challenges in biobank data

• Biobank cohorts are relatively new

– Problem: no of cases is often low – heavy

censoring!

– One possible solution: select cases and 

controls for genotyping, using case-cohort or

nested case-control sampling

• Alternative: use data on parental survival



What happens if you use parental data?
Subject’s genotype X is coded as the number of effect alleles:

X = a1 + a2

where a1 is received from one parent and a2 from the other

Parental genotypes X1 and X2 consist of the allele transferred
to the child and another allele that is not transferred:

X1 =  a1 + b1                X2 = a2 + b2

We use parental survival time (T1 or T2)  and X (instead of X1 
or X2) as a covariate!

Thus cor(X,X1)  = cor(X,X2) = 0.5 and the parameter
estimates are about half of the original parameters. 

(Estimated HR  =  approx. square root of the original HR)



Some simulations:
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Power: 38% Power: 98% Power: 75%Power: 88%

Using parental survival will lead to better power if the parental
event rate is at least 4 times higher than individual event rate!



Genetic predictors for mortality –
methodological approaches?

Genome-wide Association Study (GWAS) for

overall survival?

• Standard approach: Cox proportional hazards

regression

• Complication:  the algorithm is slow (e.g for a 

dataset of size >30000 individuals x 30000000 

SNPs)



A two-step Cox modeling approach

• Fit a Cox model with non-genetic preditors

� 2 � �
 2 �3�4��⋯�3!4! ,

• Calculate Martingale residuals:

567 �	87 −	Λ6
 /7 �3;�4��⋯�3;!4!
With 87 - censoring indicator, Λ6
 /7 - estimated baseline
cumulative hazard.

Martingale residuals are linearly associated with omitted
covariates, thus…

• Run a linear regression GWAS on the martingale

residuals to identify associated SNPs





Some results…

>270000 parental lifespans from the UK Biobank…



How to handle power issues?
(low no of cases)

• Use parental lifespans

• Select samples for genotyping, using a 
case-control strategy

– Nested case-control design

– Simple case-control design
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Nested case-control design
• For each case, select 2-4 controls that are under

follow-up at the event time (according to chosen time
scale), analyse using conditional logistic regression

Set 1

Set 2



Example of the Estonian Biobank analysis:
effects on overall mortality

Full-cohort model
(n=51621, 3355 events)

Variable beta Se P-value

Years
smoking

0.018 0.0011 1*10-57

Educ: 

secondary

-0.40 0.037 2*10-28

BMI>35 0.23 0.057 4*10-5

T2D 0.43 0.048 1*10-19

CAD 0.22 0.039 1*10-8

Nested CC-analysis

(n=9317, 3351 events, 

3 controls per case)

Variable beta se P-value

Years
smoking

0.019 0.0014 2*10-42

Educ: 

secondary

-0.38 0.045 2*10-19

BMI>35 0.21 0.069 3*10-3

T2D 0.46 0.059 2*10-14

CAD 0.22 0.047 3*10-6



Often cases are over-sampled, but this
is not a nested case-control design

• Use sampling weights! (Package „survey“ in R, for
instance) – a simulation study

Unweighted
Frequency weights
coxph(…,weights=1/p)

Sampling weights
svycoxph(..)     (survey) 



Other aspects to consider

• Proportionality of hazards

– The main assumption of the Cox model

– May be violated, if agespan in the cohort is

wide

– Right timescale choice may help

• Are we actually interested in the
proportional hazards model? 



Extreme cases and controls: 253 individuals who
died early of cardiovascular causes vs 370 with
long survival, free of coronary artery disease (CAD).
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Part II
Genetic (polygenic) risk scores

• Most complex diseases are polygenic –
there is a need for risk predictions that
combine the effects of many variables



�

Genetic risk

Environment, lifestyle, other diseases, etc.

Age

�
age

�
disease

� �

Why is genetic risk important?
Different risk factors contributing to the

individual risk of a disease.



How to measure genetic risk?
Genome-wide association studies (GWAS)

By: A. Morris et al.



Type 2 Diabetes: what do we know about genetic
risk? Known genetic loci (05/2014)
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Comparison of cohort-specific and meta-analysis effect estimates

GWAS meta-anal
EGCUT cohort

Effect estimates (OR, 
95% CI) from the
large-scale GWAS 
meta-analysis and in 
the Estonian Biobank
(Estonian Genome
Center, University of 
Tartu, EGCUT) cohort
(n=10200, incl 1200 
T2D cases).

Effects of single
markers relatively
small – how to
combine them to
one predictor?



Genetic (polygenic) risk scores (GRS)

Calculated as S  =  β1X1 + β2X2 + … + βkXk,

X2,…, Xk - allele dosages for k independent markers (SNP-s), 

β1, β2, … , βk – weights

Individuals at high 

genetic risk

Polygenic risk score for type II diabetes:
histogram of the score in 7462 individuals (Estonian Biobank) 
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GRS: questions to address

• Which markers to include?

– Only the most significant one?

– All genome-wide significant markers (p<5*10-8 in meta-
analysis)

– A larger number of markers

• Optimal weights?

- All equal (allele counts)

- Regression coefficients from GWAS meta-analysis?

- Other weights?



Problem with p-value based selections: 
„winners curse“

One tends to select markers with effect overestimated by
chance.

True vs estimated betas in a simulated GWAS



The „true GRS“…

The setting:

• = independent markers	�7 , 	& � 1…= are genotyped

• A subset 	0 ( , ( � =	of markers having an effect on the
disease risk

An additive polygenic risk score based on a subset of		genetic
variants, is defined as:	

?� �@A �7 ∈ 0 (
B

7.�
C7�7

Indicator (0/1) of whether the &th
marker belongs to the subset of 
markers with a true effect

Weight (true association parameter)

Both 0 ( and C7 are unknown and need to be estimated!



Doubly-weighted GRS:

We propose a doubly-weighted GRS as

�D0?� �@�E- "	FG-�-
B

-.�

As �E- is still estimated from the estimated coefficients FG- and

their standard errors, bias due to „winners curse“ is not
complete removed, but partially corrected for

Estimated probability that the Hth
marker belongs to the set of (
markers with strongest effect

(logistic) regression
parameter estimate
from GWAS 



GRS for Type 2 Diabetes: allele count vs 
weighted scores
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Genetic risk score (GRS) for CAD and 
cardiovascular mortality in men



Extreme cases and controls: 253 individuals who
died early of cardiovascular causes vs 370 with
long survival, free of coronary artery disease (CAD).
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Part 3: aspects of causality

Why needed?

• Epidemiology is always seeking for causality: 

if an exposure has a causal effect on the

outcome, this means an intervention on 

exposure would affect the outcome



What is a causal effect?

is not the same question as

Is the exposure (smoking level, obesity, …) 

associated with the outcome (cancer diagnosis, 

mortality,…)?

Does the exposure have a causal effect on the

outcome?

Questions in epidemiology:

Statistical analysis will answer the first question, but not
necessarily the second one…



How to estimate causal effects?

First we need to define them!

…for instance, using counterfactual variables:

Y0=Y(X=0)   - potential outcome in case of no exposure

Y1=Y(X=1)  - potential outcome in case of exposure

Y1 - Y0      - causal effect of the exposure

Complication: Y1 and  Y0  are never jointly observed in 

the same individual



How to estimate causal effects?

Y1 - Y0      - causal effect of the exposure

We can observe E(Y|X=1) and E(Y|X=0)  - average outcomes in 
the exposed and unexposed subpopulations

However, in most cases, 

E(Y|X=1) - E(Y|X=0)  ≠   E(Y1) - E(Y0)

Main reason:  (unmeasurable) confounders



Causal graphs (DAGs)
X – (observed) exposure

Y – (observed) outcome, 

U – unmeasured confounders

X Y

U

If U affects both X and Y, it can

create a correlation between X 

and Y even when there is no 

causal effect of X on Y, or it can

bias the estimates of an actual

causal effect



How to estimate causal effects?

One possible solution: randomized study – random allocation of 
the exposures

R

X Y

U

Association between R 
and Y can only be
observed in case there is
a causal effect of X on Y 
– thus even when R does
not uniquely determine
the exposure, a test of 
association between R 
and Y is a valid test of 
the causal effect

(Random

assignment)

Not all exposures can be randomized!



Can genetics help us? The idea of 
Mendelian Randomization

• Idea: genetic determinant of an exposure would

act like random assignment

G

X Y

U

(A genotype

variable or a 

genetic score) Is an association test 
between G and Y a 
valid test for a causal
effect?



Fig 2 Meta-analysis pooled estimates of the association between 
ADH1B rs1229984 (A-allele carriers v non-carriers) and coronary heart 
disease overall, and stratified by alcohol intake. 

Holmes M V et al. BMJ 2014;349:bmj.g4164

©2014 by British Medical Journal Publishing Group

Example from recent literature: Associated with 17.5% less alcohol intake



Mendelian randomization (MR)

Parameter of interest: 

– βxy, the causal effect of X on Y

Complication:  
Association between X and Y is
confounded by U

Solution: 

genotype G serves as an instrument –
correlation between G and Y provides
evidence on βxy

Untestable assumptions:  
no direct effect of G on Y;  no association between G and U

G

X Y

U

βgx

βxy

βux βuy



MR– how does it work?

With linear models, the following equations
correspond to the assumed structure:

Y = cy + βxy X + βuy U + εy E(εy |X,U)=0

and:

X = cx + βgx G + βux U + εx,     E(εx |G,U)=0

As U ⊥ G,      E(X|G)  =  cx + βgx G 

and    E(Y|G)   =   cy + βxy E(X|G) =    cy + βxyβgxG

cx, cy - some constants



MR – how does it work?

As

Regressing X on G, we estimate:

E(X|G)  =  cx + βgxG

Regressing Y on G we estimate:

E(Y|G)  =  cy + βxyβgxG,   

Thus also βxy is estimable as the ratio of the two estimated
coefficients of G
– the technique is called Instrumental Variables (IV) 
estimation, where G is an instrument

…provided there is no direct effect of G on Y!





A general association structure with
one genotype and two phenotypes

G

X Y

U

βgx βgy

βxy

βux βuy

If βgy≠ 0, the

genotype G is said 

to have a 

pleiotropic effect on 

Y (violation of the

MR assumption!)



What is estimated in the presence of pleiotropy?

As

Regressing X on G, we estimate:

E(X|G)  =  cx + βgxG

Regressing Y on G we estimate:

E(Y|G)  =  cy + βxyβgxG + βgyG,  

If we use the IV method, we estimate

βxyβgx + βgy

βgx

Thus a MR estimate in the presence of pleiotropy is

biased by βgy/βgx

G

X Y

U

βgx βgy

βxy

βux βuy



Can we test pleiotropy?

• Can we fit a regression model for Y, using both X and G as
covariates?

• In this case we estimate:

E(Y|X,G) = cy + βxyX + βgyG + βuyE(U|X,G)

If X depends on U and G, one can also express U as a 
function of X and G!

It appears that:



Can we test pleiotropy?

So:

• Even when there is no causal effect of X, thus

βxy=0, we may still estimate a nonzero (and 

significant!) coefficient of X

• Even when there is no pleiotropy (βgy=0), we may

still estimate a nonzero (negative!) coefficient of G! 



Conclusions
• Large prospective biobank cohorts make it

possible to discover important pathways leading

to diseases and premature mortality

• Biobank cohorts are different from standard 

„textbook-datasets“ for survival analysis: 

timescale choice and sampling design issues

need to be considered

• Instead of single variants, polygenic scores are 

more likely to have potential for personalized

preventive medicine



Conclusions II

• Association is not causality - old truth, but still needs

to be reminded while analyzing –omics data

• Mendelian Randomization can be a useful tool to

establish causality, but it relies on statistically

untestable assumptions. The assumptions should be

verified based on external knowledge (biology).

There are no „forbidden models“, but it is important to

understand the interpretation of model parameters

given realistic assumptions.
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