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Motivation - Quantitative genetics

Primary goal: finding the genetic basis of complex (quantitative) higher-order
phenotypes (traits).

Intercross (Fig. by Karl Broman in ”Introduction to QTL mapping in model organisms”)
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Leduc et al. Using bioinformatics and systems genetics to dissect HDL-cholesterol genetics in an

MRL/MpJ x SM/J intercross. Journal of Lipid Research, 53:1163-1175, 2012.
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Motivation - Quantitative genetics

Find DNA sites along the genome associated to the phenotype, known as
quantitative trait loci (QTLs). Simplest approach: regress phenotype on each
marker (Soller, 1976), calculating the so-called logarithm of odds (LOD) score.

H0 : yi ∼ N (µ0, σ
2
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Motivation - Quantitative genetics

Estimate the effect size of found QTLs using, for instance, the percentage of
variance explained by the QTL.
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= 0.346 .

About 35% of the variability in HDL
levels is explained by this QTL.
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Motivation - Quantitative genetics on genomics data

Yeast BY x RM cross (Fig. by Rockman and Kruglyak, 2006). The resulting data published by

Brem and Kruglyak (2005) consists of ∼ 6, 000 genes and ∼ 3, 000 genotype markers.

DNA sites along the genome associated to gene expression are called
expression QTLs (eQTLs).
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Motivation - Quantitative genetics on genomics data

Straightforward approach: apply classical QTL analysis methods independently
on each gene expression profile (Soller, 1976):

H0 : y ∼ N (µ0, σ
2
0)

H1 : y |g ∼ N (µg , σ
2
1)

}
LOD = log10

L1

L0
=

n

2
log10

RSS0

RSS1
.

Plot location of genome-wide significant eQTLs with respect to both, eQTL and
gene genomic position (dot plot).
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Motivation - Quantitative genetics on genomics data

Let Γ denote the an index set for all genes with pΓ = |Γ| (thousands).

Let n denote the number of profiled individuals (tens, hundreds).

Let Y = {yij}pΓ×n denote the matrix of gene expression values with
pΓ � n:

Y 1 2 . . . n
g1 y11 y12 . . . y2n

g2 y21 y22 . . . y2n

g3 y31 y32 . . . y3n

...
...

...
...

...
gpΓ

ypΓ1 ypΓ2 . . . ypΓn

Gene expression is a high-dimensional multivariate trait.
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Motivation - Quantitative genetics on genomics data

Gene expression measurements by high-througthput instruments are the
result of multiple types of effects:

Genetic: DNA polymorphisms affecting transcription initiation and RNA
processing.

Molecular: RNA-binding events affecting post-transcriptional regulation
(e.g., RNA degradation).

Environmental: response of the cell to external stimuli.

Technical: sample preparation protocols or laboratory conditions create
sample-specific biases affecting most of the genes.

All these effects render expression measurements in Y highly-correlated,
thereby complicating the distinction between direct and indirect effects.
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Motivation - Quantitative genetics on genomics data

Think of genes and eQTLs as forming a network, which we shall call an
eQTL network.
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Assume that gene expression forms a pΓ-multivariate sample following a
conditional Gaussian distribution given the joint probability of all eQTLs

=⇒ mixed Graphical Markov model (Lauritzen and Wermuth, 1989)
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Software availability: the R/Bioconductor package qpgraph

Available at http://bioconductor.org/packages/qpgraph
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Overview of GMMs - undirected Gaussian GMMs

Let XV be continuous r.v.’s and G = (V ,E ) an undirected labeled graph:

V = {1, ..., p} are the vertices of G

XV ∼ P(XV ) ≡ N (µ,Σ)

µ is the p-dimensional mean vector

Σ = {σij}p×p is the covariance matrix

Σ−1 = {κij}p×p is the concentration matrix

Note that Pearson and partial correlation coefficients follow from scaling
covariance (Σ) and concentration (Σ−1) matrices, respectively:

ρij =
σij√
σiiσjj

ρij .R =
−κij√
κiiκjj

,R = V \{i , j} .
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Overview of GMMs - undirected Gaussian GMMs

Let G = (V ,E ) be an undirected graph with V = {1, . . . , p}, a Gaussian
graphical model can be described as follows:

Σ−1 =


κ11 κ12 0 0 0
κ21 κ22 κ23 κ24 0
0 κ32 κ33 0 κ35

0 κ42 0 κ44 κ45

0 0 κ53 κ54 κ55


2

4

5

1

3

A probability distribution P(XV ) is undirected Markov w.r.t. G if

(i , j ) 6∈ E ⇒ κij = 0 ⇔ Xi⊥⊥Xj |XV \{Xi ,Xj}

These models are also known as covariance selection models (Dempster,
1972) or concentration graph models (Cox and Wermuth, 1996).

Two vertices i and j are separated in G by a subset S ⊂ V \{i , j} iff
every path between i and j intersects S , denoted hereafter by i⊥G j |S .

Global Markov property (Hammersley and Clifford, 1971):

i⊥G j |S ⇒ Xi⊥⊥Xj |XS .
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Overview of GMMs - undirected Gaussian GMMs

Consider simulating an undirected Gaussian GMM by simulating a covariance
matrix Σ such that

1 Σ is positive definite (Σ ∈ S+),

2 the off-diagonal cells of the scaled Σ corresponding to the present edges in
G match a given marginal correlation ρ,

3 the zero pattern of Σ−1 matches the missing edges in G .

This is not straightforward since setting directly off-diagonal cells to zero in
some initial Γ ∈ S+ will not typically lead to a positive definite matrix.
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Overview of GMMs - undirected Gaussian GMMs

Let ΓG be an incomplete matrix with elements {γij} for i = j or (i , j ) ∈ G .

1

2 3

4

ΓG =


γ11 γ12 γ13 ∗
γ21 γ22 ∗ γ24

γ31 ∗ γ33 γ34

∗ γ42 γ43 γ44


Γ is a positive completion of ΓG if Γ∈S+ and {Γ−1}ij =0 for i 6= j , (i , j ) 6∈G .

Draw ΓG from a Wishart distributionWp(Λ, p); Λ=∆R∆, ∆=diag({
√

1/p}p)
and R = {Rij}p×p where Rij = 1 for i = j and Rij = ρ for i 6= j .

It is required that Λ ∈ S+ and this happens if and only if −1/(p − 1) < ρ < 1.

Finally, to obtain Σ ≡ Γ from ΓG , qpgraph uses the regression algorithm by
Hastie, Tibshirani and Friedman (2009, pg. 634) as matrix completion algorithm.
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Overview of GMMs - mixed GMMs

Let ∆ denote the set of vertices indexing discrete r.v.’s Iδ, δ ∈ ∆.

Let Γ denote the set of vertices indexing continuous r.v.’s Yγ , γ ∈ Γ.

Let G = (V ,E ) be a graph with marked vertices V = ∆ ∪ Γ, where
p∆ = |∆|, pΓ = |Γ|, p = p∆ + pΓ, and E be the edge set.

Vertices in V index the r.v.’s X = (I ,Y ), where Y correspond to genes, I
to markers or eQTLs, and the joint sample space of X is denoted by,

x = (i , y) = {(iδ)δ∈∆, (yγ)γ∈Γ} ,

where iδ denote discrete genotype alleles with i ∈ I, and yγ denote
continuous expression values.

Assume y ∼ N|Γ|(µ(i),Σ(i)) with moment parameters (p(i), µ(i),Σ(i)),

f (x ) = f (i , y) = p(i)|2πΣ(i)|− 1
2×exp

{
−1

2
(y − µ(i))TΣ(i)−1(y − µ(i))

}
.
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Overview of GMMs - mixed GMMs

p(i) is the probability that I = i , and µ(i) and Σ(i) are the conditional
mean and conditional covariance matrix of Y .

If the covariance matrix is constant across i ∈ I, i.e., Σ(i) ≡ Σ, then the
model is homogeneous. Otherwise, the model is said to be heterogeneous.

We can write the logarithm of the density in terms of the canonical
parameters (g(i), h(i),K (i)):

log f (i , y) = g(i) + h(i)Ty − 1

2
yTK (i)y ,

where

g(i) = log(p(i))− 1

2
log |Σ(i)| − 1

2
µ(i)TΣ(i)−1µ(i)− |Γ|

2
log(2π) ,

h(i) = Σ(i)−1µ(i) ,

K (i) = Σ(i)−1 .
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Overview of GMMs - mixed GMMs

Simplifying assumptions (in the context of genetical genomics data):

1 Discrete genotypes affect gene expression and not
the other way around.

2 Joint distribution of X is a conditional Gaussian
distribution XV ∼ NpY

(µ(i),Σ(i)) with i ∈ I.

3 Genotype alleles affect only mean expression levels
of genes and not the correlations between them,
i.e., Σ(i) ≡ Σ is constant throughout i ∈ I.

4 Discrete r.v.’s are simulated as being marginally
independent between them.

5 Every continuous r.v. cannot depend on more than
one discrete r.v.

I1

Y1 Y2

Y3
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Overview of GMMs - mixed GMMs

Given a suitable covariance matrix Σ, under Σ(i) ≡ Σ, we can calculate
conditional mean vectors µ(i) as function of the canonical parameters h(i),

µ(i) = Σ · h(i) .

Simulate h(i) assuming genotypes with two possible alleles and
independent eQTLs given an additive effect aδγ = µγ(1)− µγ(2) of an
eQTL Iδ on a gene Yγ .

Full details in Tur, Roverato and Castelo. Mapping eQTL networks with
mixed graphical Markov models. Genetics, 198(4):1377-1383, 2014.
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Overview of GMMS - simulation using qpgraph
Gaussian GMMs

XV ∼ Np (µ,Σ)

1

2 3

4
> library(qpgraph)
> set.seed(12345)
> gmm <- rUGgmm(dRegularGraphParam())
> round(solve(gmm$sigma), digits=1)

1 2 3 4
1 9.5 -3.4 -7.2 0.0
2 -3.4 5.9 0.0 -2.3
3 -7.2 0.0 8.2 0.9
4 0.0 -2.3 0.9 2.3

> plot(gmm)

Homogeneous Mixed GMMs

XV ∼ Np (µ(i),Σ(i)) with Σ(i) ≡ Σ

I1

Y1 Y2

Y3

> library(qpgraph)
> set.seed(12345)
> gmm <- rHMgmm(dRegularMarkedGraphParam())
> round(solve(gmm$sigma), digits=1)

Y1 Y2 Y3
Y1 11.0 0.0 -7.2
Y2 0.0 1.2 -1.6
Y3 -7.2 -1.6 8.2

> gmm$mean()

Y1 Y2 Y3
1 0.4720734 0.9669291 0.7242007
2 1.4720734 1.9669291 1.7934027

> plot(gmm)
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Propagation of eQTL (genetic) additive effects
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eQTL additive effects propagate proportionally to marginal correlations ρ between genes.
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Conditional independence in mixed GMMs

Classical (p � n) approach: use conditional independence to distinguish
direct from indirect eQTL associations,

Xδ⊥⊥Xγ |XV \{δ,γ} , δ ∈ ∆, γ ∈ Γ,

and direct from indirect gene-gene associations,

Xγ⊥⊥Xζ |XV \{γ,ζ} γ, ζ ∈ Γ.

For Σ ≡ Σ(i), the log-likelihood ratio statistics are (Lauritzen, 1996):

Dδγ.V \{δ,γ} = −2 ln

(L0

L1

)
= −2 ln

( |ssdΓ||ssdΓ∗(∆∗)|
|ssdΓ∗ ||ssdΓ(∆∗)|

)n/2

,

Dγζ.V \{γ,ζ} = −2 ln

(L0

L1

)
= −2 ln

( |ssdΓ||ssdΓ\{γ,ζ}|
|ssdΓ\{γ}||ssdΓ\{ζ}|

)n/2

,

respectively, where Γ∗ = Γ\{γ} and ∆∗ = ∆\{δ}.
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Conditional independence in mixed GMMs

The likelihood function L1 for the homogeneous, saturated model attains
its maximum if and only if n ≥ |Γ|+ |I|. Unfortunately, since p � n, we
cannot directly test for full-order conditional independence.

However, MLEs exist for limited-order conditional independences given
subsets of genes Q such that |Q | < (n − 2).

Let Xα and Xγ , with γ ∈ Γ and let Q ⊂ Γ. If Q separates α from γ in the
underlying G we can find this out by testing whether Xα⊥⊥Xγ |XQ .

Assume V = {α, γ,Q}. Saturated and constrained models differ in one
single edge. This makes them decomposable and collapsible onto XV \{γ}:

fV = fγ|V \{γ} · fV \{γ} ,

leading to L0 = L0
γ|V \{γ} · L0

V \{γ} and L1 = L1
γ|V \{γ} · L1

V \{γ}.
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Conditional independence in mixed GMMs

Since L0
V \{γ} = L1

V \{γ}, we can calculate the pure continuse case as,

Dγζ.Q = −2 ln

(
L0
γ|V \{γ}

L1
γ|V \{γ}

)
= −2 ln

(
σ̂0
γ|V \{γ}

σ̂1
γ|V \{γ}

)−n/2
,

where σ̂0
γ|V \{γ} = RSS0 and σ̂1

γ|V \{γ} = RSS1, and therefore,

Dγζ.Q = −2 ln

(
RSS1

RSS0

)n/2

= −2 ln(Λγζ.Q)n/2 ,

which follows asymptotically a χ2
df with df = 1.

Analogously, the mixed case can be written as,

Dδγ.Q = −2 ln

(
RSS1

RSS0

)n/2

= −2 ln(Λδγ.Q)n/2 ,

which follows asymptotically a χ2
df with df = |I∆∗ |(|Iδ| − 1).
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Conditional independence in mixed GMMs

From the relationship between χ2
k and gamma Γ(k/2, 2) distributions (Rao,

1973; Lauritzen, 1996) it can be shown that,

Λγζ.Q ∼ B

(
n − |Γ| − |I|+ 1

2
,

1

2

)
Λδγ.Q ∼ B

(
n − |Γ| − |I|+ 1

2
,
|I∆∗ |(|Iδ| − 1)

2

)
,

exactly. Likewise, using the relationship between the beta and F distributions
(Rao, 1973) we can also calculate the F-statistics

Fγζ.Q =
1

n − |Γ| − |I|+ 1
· Λγζ.Q

1− Λγζ.Q
,

Fδγ.Q =
|I∆∗ |(|Iδ| − 1)

n − |Γ| − |I|+ 1
· Λδγ.Q

1− Λδγ.Q
,

which, again in terms of mixed GMM parameters, follow exactly

Fγζ.Q ∼ F (1,n − |Γ| − |I|+ 1) ,

Fδγ.Q ∼ F (|I∆∗ |(|Iδ| − 1),n − |Γ| − |I|+ 1) .
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Conditional independence in mixed GMMs

Confounding effects in expression data affecting all genes can be implicitly
adjusted by conditoning on higher-order associations.

Simulate an eQTL network with 100 disconnected genes, where one of them
has an one eQTL with a = 2.5. Include a continuous confounding factor
either affecting all genes or affecting only the two genes, or the gene and
the marker, being tested, with ρ = 0.5. Sample data sets with n = 100.
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q-order correlation graphs

We would like to use full-order conditional independence to estimate the
direct association between two genes, or a genotype marker and a gene,
adjusting for every other gene and intervining factor.

We cannot use directly full-order conditional indpendence because in our
data p � n, and moreover, p is of very high-dimension.

Observation: the underlying molecular and functional relationships are
sparse, that is, the fraction of interactions present in a specific cellular state
under study is much smaller than the total number of possible interactions.
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q-order correlation graphs

If the underlying G is sparse, we can expect to explain many of the indirect
associations by conditioning on subsets Q with |Q | = q and q < (n − 2).

The mathematical object that results from testing q-order correlations is
called a q-order correlation graph, or qp-graph (Castelo and Roverato,
2006), and is denoted by G(q) = (V ,E (q)).
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q-order correlation graphs

To estimate G(q) we use a quantity called the non-rejection rate (NRR).

Let Qq
ij = {Q ⊆ V \{i , j} : |Q | = q} and let T q

ij be a binary r.v.
associated to the pair of vertices (i , j ) that takes values from the following
three-step procedure:

1 A subset Q is sampled from Qq
ij uniformly at random.

2 Test the null hypothesis of conditional independence H0 : Xi⊥⊥Xj |XQ .

3 If H0 is rejected then T q
ij takes value 0, otherwise takes value 1.

T q
ij follows a Bernoulli distribution and the NRR, denoted as νqij , is defined

as its expectancy
νqij := E[T q

ij ] = Pr(T q
ij = 1) .
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q-order correlation graphs

It can be shown (Castelo and Roverato, 2006) that the theoretical NRR is,

νqij = βij (1− πq
ij ) + (1− α)πq

ij ,

where πq
ij is the fraction of vertex subsets of size q separating vertices i and j in

G , α is the significance level of the tests and βij is the average value of the
type-II error throughout the tests between vertices i and j .
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q-order correlation graphs

An estimate ν̂qij of the NRR can be obtained by testing Xi⊥⊥Xj |XQ for
every Q ∈ Qq

ij .

However, since |Qq
ij | can be prohibitively large, we use a limited number of

subsets Q ∈ Qq
ij , such as one-hundred, sampled uniformly at random.

We can also explicitly adjust for confounding factors and other covariates
C = {C1,C2, . . . ,Ck} by sampling from

Qq
ij .C = {Q ⊆ {V \{i , j}} ∪ C : C ⊆ Q and |Q | = q} .

A qp-graph estimate Ĝ
(q)
ε can be obtained by selecting edges (i , j ) that

meet a maximum cutoff value ε:

Ĝ(q)
ε := {(V ,E (q)) : (i , j ) ∈ E (q) ⇔ ν̂qij < ε} .
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A three-step estimation strategy for eQTL networks

We propose to use conditional independence and q-order correlation graphs to
estimate eQTL networks in a strategy consisting of three steps:

1 Estimate the qp-graph G(0) under some standard framework such as the
null hypothesis of no-eQTL at each marker (correcting p-values by multiple
testing), or under the global null hypothesis of no-eQTL anywhere in the
genome (calculating p-values by permutation).

2 Estimate a qp-graph G(q) ⊆ G(0) for one or more q values and restrict
edges in G(0) to those also present in G(q).

3 Among eQTLs in G(q) ⊆ G(0) that are in the same chrosomosome and
target a common gene, perform a forward-selection strategy at some
significance level α, to discard redundant associations tagging the same
causal eQTL.
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A three-step estimation strategy - data simulation

We will illustrate this three-step estimation strategy with simulated data.

Simulate genetic map with 9 chromosomes, 10 markers per chromosome.
> detach("package:qpgraph") ## remove qpgraph from R's search path
> library(GenomeInfoDb) ## to enable a correct overlaading of
> library(qtl) ## the R/qtl function sim.cross() by
> library(qpgraph) ## the qpgraph package
> map <- sim.map(len=rep(100, times=9),
+ n.mar=rep(10, times=9),
+ anchor.tel=FALSE,
+ eq.spacing=TRUE,
+ include.x=FALSE)

Simulate eQTL network with 50 genes, 25 have local eQTLs and 5 eQTL
hotspots trans-acting (distant) on 5 other genes. Each gene is also
connected to other two genes.
> set.seed(12345)
> sim.eqtl <- reQTLcross(eQTLcrossParam(map=map, genes=50, cis=0.5, trans=rep(5, 5)),
+ a=2, rho=0.5)

Simulate data from this eQTL network model.
> set.seed(12345)
> cross <- sim.cross(map, sim.eqtl, n.ind=100)
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A three-step estimation strategy - data simulation

Display the dot plot of the simulated eQTL associations.

> plot(sim.eqtl, main="Simulated eQTL network G", cex.lab=1.5, cex.main=2)
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A three-step estimation strategy - parameter setup

Pull the gene annotation from the simulated eQTL network object.
> annot <- data.frame(chr=as.character(sim.eqtl$genes[, "chr"]),
+ start=sim.eqtl$genes[, "location"],
+ end=sim.eqtl$genes[, "location"],
+ strand=rep("+", nrow(sim.eqtl$genes)),
+ row.names=rownames(sim.eqtl$genes),
+ stringsAsFactors=FALSE)

Translate the simulated cM positions to physical positions using a fixed
rate of 5 Kb/cM.
> pMap <- lapply(map, function(x) x * 5)
> class(pMap) <- "map"
> annot$start <- floor(annot$start * 5)
> annot$end <- floor(annot$end * 5)

Create a Seqinfo object of the simulated genome describing its
chromosome names and lengths using the 5 Kb/cM rate.
> genome <- Seqinfo(seqnames=names(map), seqlengths=rep(100 * 5, nchr(pMap)),
+ NA, "simulatedGenome")

Create a parameter object of class eQTLnetworkEstimationParam.
> param <- eQTLnetworkEstimationParam(cross, physicalMap=pMap,
+ geneAnnotation=annot, genome=genome)
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A three-step estimation strategy - first step

Calculate all marginal associations between markers and genes.
> eqtlnet.q0 <- eQTLnetworkEstimate(param, ~ marker + gene, verbose=FALSE)
> eqtlnet.q0

eQTLnetwork object:
Genome: simulatedGenome
Input size: 90 markers 50 genes
Model formula: ~marker + gene

Obtain a first estimate G(0) of the eQTL network by selecting associations
at FDR < 0.05.
> eqtlnet.q0.fdr <- eQTLnetworkEstimate(param, estimate=eqtlnet.q0,
+ p.value=0.05, method="fdr")
> eqtlnet.q0.fdr

eQTLnetwork object:
Genome: simulatedGenome
Input size: 90 markers 50 genes
Model formula: ~marker + gene (q = 0,)
G^(0,): 140 vertices and 1996 edges corresponding to

1015 eQTL and 981 gene-gene associations meeting
a fdr-adjusted p-value < 0.05
and involving 50 genes and 87 eQTLs
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A three-step estimation strategy - first step

G(0) contains all marginal associations with FDR < 0.05.

> par(mfrow=c(1, 2))
> plot(sim.eqtl, main="Simulated eQTL network G", cex.lab=1.5, cex.main=1.8)
> plot(eqtlnet.q0.fdr, main="Estimated eQTL network G^(0)", cex.lab=1.5, cex.main=1.8)

Simulated eQTL network G

eQTL location

G
en

e 
lo

ca
tio

n

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Estimated eQTL network G^(0)

eQTL location

G
en

e 
lo

ca
tio

n

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Robert Castelo - robert.castelo@upf.edu - @robertclab Systems genetics with GMMs 44 / 63



A three-step estimation strategy - second step

Calculate NRR values νqij with q = 3 between markers and genes.
> eqtlnet.q0.fdr.nrr <- eQTLnetworkEstimate(param, ~ marker + gene | gene(q=3),
+ estimate=eqtlnet.q0.fdr, verbose=FALSE)
> eqtlnet.q0.fdr.nrr

eQTLnetwork object:
Genome: simulatedGenome
Input size: 90 markers 50 genes
Model formula: ~marker + gene | gene (q = 0,3)
G^(0,3): 140 vertices and 1996 edges corresponding to

1015 eQTL and 981 gene-gene associations meeting
a fdr-adjusted p-value < 0.05
and involving 50 genes and 87 eQTLs

Obtain a second estimate G(q) of the eQTL network by selecting
associations at FDR < 0.05 and with NRR value νqij < 0.1.
> eqtlnet.q0.fdr.nrr <- eQTLnetworkEstimate(param, estimate=eqtlnet.q0.fdr.nrr,
+ epsilon=0.1)
> eqtlnet.q0.fdr.nrr

eQTLnetwork object:
Genome: simulatedGenome
Input size: 90 markers 50 genes
Model formula: ~marker + gene | gene (q = 0,3)
G^(0,3): 140 vertices and 440 edges corresponding to

293 eQTL and 147 gene-gene associations meeting
a fdr-adjusted p-value < 0.05,
a non-rejection rate epsilon < 0.10
and involving 50 genes and 85 eQTLs
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A three-step estimation strategy - second step

G(q) ⊆ G(0) has lost most of the vertical bands in G(0).

> par(mfrow=c(1, 2))
> plot(eqtlnet.q0.fdr, main="Estimated eQTL network G^(0)", cex.lab=1.5, cex.main=1.8)
> plot(eqtlnet.q0.fdr.nrr, main="Estimated eQTL network G^(q)", cex.lab=1.5, cex.main=1.8)
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A three-step estimation strategy - third step

Examine the median number of eQTLs per gene.
> eqtls <- alleQTL(eqtlnet.q0.fdr.nrr)
> median(sapply(split(eqtls$QTL, eqtls$gene), length))

[1] 6

Note that while we have simulated at most one eQTL per gene, we have
currently estimated a median of 6 eQTLs per gene.
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A three-step estimation strategy - third step

Perform a forward selection procedure at a nominal significance level
α < 0.05 to remove redundant associations tagging the same causal eQTL.

Causal SNP 
(unobserved)

m1 m2m3m4

g
H0 : g ?? m1|;
H0 : g ?? m2|m2

H0 : g ?? m3|{m1, m2}
H0 : g ?? m4|{m1, m2, m3}

m1

> eqtlnet.q0.fdr.nrr.sel <- eQTLnetworkEstimate(param, estimate=eqtlnet.q0.fdr.nrr,
+ alpha=0.05)
> eqtlnet.q0.fdr.nrr.sel

eQTLnetwork object:
Genome: simulatedGenome
Input size: 90 markers 50 genes
Model formula: ~marker + gene | gene (q = 0,3)
G^(0,3,*): 140 vertices and 238 edges corresponding to

91 eQTL and 147 gene-gene associations meeting
a fdr-adjusted p-value < 0.05,
a non-rejection rate epsilon < 0.10,
a forward eQTL selection significance level alpha < 0.05
and involving 50 genes and 50 eQTLs
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A three-step estimation strategy - third step

Most horizontal bands in G(q) have disappeared.

> par(mfrow=c(1, 2))
> plot(sim.eqtl, main="Simulated eQTL network", cex.main=2, cex.lab=1.5)
> plot(eqtlnet.q0.fdr.nrr.sel, main="Estimated eQTL network", cex.main=2, cex.lab=1.5)
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Visualization - from dot plot to hive plot

Visualize the gene-gene dimension simultaneously with eQTLs using Hive plots
(Krzywinski et al., 2012).
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Analysis of a yeast cross - parameter setup

We reanalyzed the yeast data from Brem and Kruglyak (2005), first
calculating an estimate G(0) by doing all pairwise marginal tests and
selecting edges at FDR < 1%.

Second, we estimated NRR values νqij between every possible pair of

marker-gene and gene-gene in G(0), using conditioning subsets restricted to
the genes and q = {25, 50, 75, 100}. The resulting estimates νqkij , qk ∈ q ,

were averaged ν q̄ij = 1
|q|
∑

qk
νqkij , to account for the uncertainty in the

choice of q (Castelo and Roverato, 2009).

Considered a conservative cutoff ε = 0.1 on ν q̄ij , which selects edges with

more than 90% of rejected tests, and obtained G
(q̄)
0.1 having |E (q̄)

0.1 | = 4, 110
edges from which 2,448 were eQTLs and the rest gene-gene associations.

Redundant eQTL associations were removed by a forward selection
procedure with α = 0.05.
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Analysis of a yeast cross - comparative performance

Compare G
(q̄)
0.1 with the top 2,448 marker-gene pairs with highest marginal LOD

score, in a straightforward single-marker regression approach.

Marginal LOD score qp-graph G
(q̄)
0.1

qpgraph yields a higher enrichment of local eQTLs and fewer vertical bands.
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Analysis of a yeast cross - comparative performance

Compare with the causal inference approach of Chaibub Neto et al. (2013).

Fig. 1
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Analysis of a yeast cross - comparative performance

Precision-recall curves against a bronze standard formed by KO genes and their
putative targets derived from differential expression (left) and restricted to
curated transcriptional regulatory relationships on Yeastract (right).
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qpgraph performs similarly in identifying differential expression KO associations,
but it improves in identifying direct regulatory associations.
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Genetic control of gene expression across chromosomes

Display of the differential genetic control of gene expression across chromosomes
by means of Hive plots (Krzywinski et al., 2012).
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Analysis of a yeast cross - magnitude of effects

Estimation of the percentage of variance in gene expression explained by eQTLs.
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eQTLs explain most of the expression variablity of network hub genes.
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Analysis of a yeast cross - magnitude of effects

Independent data from Gagneur et al. (2013) show the same pattern.
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Analysis of a yeast cross - magnitude of effects

Most hub genes with more than 7 connections are involved in mating regulation.
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Concluding remarks

Limited-order correlation graphs, or qp-graphs, use conditional independence on
marginal distributions to robustly infer eQTL and gene-gene associations.

Mixed GMMs allow one to embrace the complexity of a high-dimensional
multivariate trait, to study the genetic control of gene networks.

By simulation, we showed that eQTL additive effects propagate throughout the
network proportionally to the marginal correlation between genes.

There are other ways to use mixed GMMs in the p � n setting, such as
penalized likelihood group-lasso norm approaches (Lee and Hastie, 2014).
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