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Disease gene discovery  
in rare congenital disorders 
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Genetic diagnosis 

  Main medical goals 
  End diagnostic odyssey 
  Estimate risk for next pregnancy 
  Predict disease progression, life expectancy, etc. 

  Patient - deletion del(22)(q12.2) 
  Pulmonary valve stenosis 
  Cleft uvula 
  Mild dysmorphism 
  Mild learning difficulties 
  High myopia 
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Deletion del(22)(q12.2) 

  Deletion on Chromosome 22 
  ~0.8Mb 

  Deletion contains NF2 
  NF2 ↔ acoustic neurinomas 
  Benign tumor, BUT 

  Hard to diagnose 
  Severe complications 



Exome sequencing 

  Clinical sequencing of whole genomes is around the corner 
  But data will be hard to interpret 

  Exome sequencing 
  Routine clinical use has started 
  More conserved, fewer mutations, easier to interpret 

  Some mutations are easy to interpret, but in most cases it will 
still be hard to identify which mutation causes disease 
  Can variants be prioritized? 
  Existing tools for variant deleteriousness prediction (SIFT, 

Polyphen, MutationTaster etc.) fall short 
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Exome sequencing and gene prioritization 
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Erlich, Y. et al. Exome sequencing and disease-
network analysis of a single family implicate a 
mutation in KIF1A in hereditary spastic 
paraparesis. Genome Res. 21, 658–664 (2011). 



Candidate gene prioritization 
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Prioritization by example 

  Known/training genes 
  Type 2 diabetes: 21 known genes in OMIM, 118 known 

genes in GAD 
  Manually curated gene set from Elbers et al., 2007 

  ACDC, ADRA2A, ADRA2B, ADRB1, ADRB2, ADRB3, LEP, 
LEPR, NR3C1, UCP1, UCP2, UCP3, PPARG, KCNJ11, TCF7L2 

  Candidate/test genes 
  Prioritizations of a known region (from Elbers et al., 2007) 

  12q24: 327 candidates 
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Region 12q24: 327 candidates 
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Responsible for MODY, an uncommon monogenetic form of 
early onset T2D. 

McCarthy et al. (2006), Cohen et al. (2006), Perez-Martinez et al. (2005) 

NCOR2 has an important role in the adipocyte by inhibiting 
adipocyte differentiation via repression of PPAR-g activity. 

Key component in the reverse cholesterol transport pathway. 
Genetically associated with differences in insulin sensitivity  
in healthy subjects 



Profiling known genes (Gene Ontology) 

  A term is over-represented if its frequency inside the training set 
is significantly larger than its frequency over the genome 
  E.g., Gene Ontology, Interpro, KEGG 
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Scoring derived from  
Fisher's omnibus statistic 
•  S = -2 Σi log pi 
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Data fusion with order statistics 
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Aerts et al. Nature Biotech. 2006 
www.esat.kuleuven.be/endeavour!

Endeavour 



Endeavour 
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http://www.esat.kuleuven.ac.be/endeavour 

  Multiple species: 
  Human, mouse, rat, fly, worm 

  Integration across species will  
  soon be supported 



Prioritization for a monogenic disorder 
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A novel locus for congenital heart 
defect on chromosome 6q24-25 
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Translocation t(2;6)(q21;q25) 
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Zebrafish morpholino knock-down 
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Mutation sequencing 

  Sequencing of TAB2 in 270 CHD patients  
revealed 2 missense mutations 
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Kernel methods for genomic data fusion 
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Kernel-based genomic data fusion	
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Kernel matrix  
~ nonlinear extension of covariance/correlation matrix 

Instead of using original data directly, use kernel matrix only 
 (Think of hierarchical clustering.) 

Advantage 1: kernel matrices form a single type of object, 
regardless of the heterogeneity of the original data types 

Advantage 2: all machine learning methods can be applied to 
kernels (classification, clustering, prioritization, ranking, etc.)  



Kernel data fusion (a.k.a. MKL) 
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Prioritization by novelty detection 



One-class support vector machine	



Kernel fusion for novelty detection 

K = µ1K1 + µ2K2	

K1	 K2	
M

1 



Kernel fusion in one-class SVM	

      -norm kernel fusion (De Bie et al., 2007) 

     -norm kernel fusion (Yu et al., 2009) 



L2 vs. L∞ kernel fusion  



A framework for kernel data fusion 
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Kernel data fusion 
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ETkL: Extract, Transform, Kernelize, Learn 

  Systematic multi-tier framework for data integration 
  Resembles multi-tier architecture of complex IT systems and 

Extract-Transform-Load methodology of datawarehousing 
1.  Database / web service sources 
2.  Data reconciliation, cleaning, and warehousing, etc. 
3.  Scaling, normalization, feature selection, etc. 
4.  Computation and storage of kernels 
5.  Learning 

  May require feedback loops  (e.g., feature selection) 

  Scale up to large, heterogeneous databases 
  20,000 x 20,000 kernel matrices are ugly animals 
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Handling large kernel matrices 

  One way to handle large kernel matrices is via low-
rank approximations 
  Store r x n instead of n x n 

  Cholesky decomposition 
  K symmetric positive definite 
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Incomplete Cholesky decomposition 

  Incomplete Cholesky 
  K symmetric positive semidefinite 
  Limit to rank r ≤ rank(K) 
  Add pivoting to capture more informative rows/columns first 
  Limit information loss to e.g. 5% 
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The No-Voodoo principle 

  Given a data matrix D for a learning problem, the no voodoo principle states 
that, in the absence of prior knowledge or arbitrary assumptions, no information 
can be extracted about the problem except the information provided by the data 
matrix 

  In particular, no information can be created that wasn’t initially present in 
the data 

  No amount of bagging, random projection, nonlinear high-dimensional 
feature map, etc. can extract information that was not present in the 
data (except through the implicit or explicit injection of constraints into 
the problem) 

  If two frameworks represent data in ways that are related in a one-to-one 
fashion, there is nothing that prevents the development of methods with 
identical accuracy (e.g., random projections vs. spectral methods) 

  If one method outperforms another on a given problem (remember the no 
free lunch theorem), it is because the methods are more or less efficient (in 
particular, in terms of generalization performance vs. retrospective 
accuracy) at capturing the available information or because the methods 
incorporate explicit or implicit constraints that are more or less relevant to 
the given learning task  
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  About 2,000 rare coding variants per patient 
  About 5 de novo coding variants per patient 

  Tractable by filtering 
  Loss-of-function (truncating, splice site) mutations 
  Two patients with de novo variants in same gene 
  Recessive mutations in inbred families 
  Multiple patients with rare variants in the same gene (association) 

  Challenging 
  What about locus heterogeneity? 
  What about compound heterozygotes? 
  What about oligogenic disorders? 

 Need to prioritize variants 

Challenges 



Variant prioritization 

  Variant and basepair level 
  Structural change: change from one nucleotide to the another will 

change the amino-acid encoded at that position, which will change 
the structure of the protein and thus its function 

  Association: variant is present more often in patients than controls 
  Conservation: position at which the variant is found is highly 

conversed across species and evolution is apparently reluctant to 
see this position changed 

  Gene level 
  Haploinsufficiency: gene in which the variant is found is putatively 

haploinsufficient 
  Gene prioritization: gene in which the variant is found is known to 

be involved or is putatively involved in the phenotype of interest 

  Locus level 
  Locus mapping: region of the genome in which variant is found is 

associated (CNV, association, linkage) with phenotype of interest 
36 



Variant prioritization 
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Variant prioritization 

How do you integrate predictions  
at different resolutions? 



Machine 
learning 

Gene information 

Variant 
information 

Phenotype 
information 

homes.esat.kuleuven.be/~bioiuser/eXtasy/ !



  HGMD: 24,454 variants in 1,142 HPO terms 
  HGMD terms mapped to HPO 
  At least three genes for training of Endeavour 

  Control sets (sampled 500/phenotype): 
  Polymorphisms: MAF > 1%, 1000G, 43,724 variants 
  Rare 

  MAF < 1%, 1000G, 43,724 variants 
  In-house, > 20X coverage, 257, 556 variants 

  Scores from different sources mapped directly from highest to 
lowest level 

  Existing method perform poorly on rare a priori benign variants 
vs. polymorphisms 

Data sets 



Polyphen2 



SIFT 



MutationTaster 



  Previous methods trained to distinguish disease-causing variants 
from common SNPs, not rare variants 

  “Deleterious” variant = variant that affects gene function 
  Deleterious variants may not be disease causing 
  “Mildly deleterious” – Kryukov et al. (2007) 
  “Accelerated population growth and weak purifying selection” – 

Tennessen et al. (2012) 

  Bad training sets? 
  What if they are deleterious but not specific for our desired 

phenotype? 

Where is the problem? 
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Random forests 

•  Stable 
•  Fast 
•  Semi-interpretable 
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Temporal stratification 





  Data sets are biased 
  Benchmark on known mutations 
  Retrospective benchmarks are overoptimistic! 

  High proportion of negative variants 
  Despite good discrimination, still lots of false positives 

What’s the catch? 



homes.esat.kuleuven.be/~bioiuser/eXtasy/ !



Conclusions and perspectives 

  Genomic data fusion for disease gene prioritization 
  Kernel methods for genomic data fusion 
  Extract, Transform, kernelize & Learn 

  Phenotype information improves variant prioritization 
  Importance of reference data 

  Common SNPs 
  Rare a priori benign variants 
  Common and rare variants from local population 

  Scoring for multiple phenotypes 
  Further integration with locus info (GWAS, CNV) 
  Further integration with variant association scoring 

  Scoring other mutations (synonymous, indels, noncoding)!
homes.esat.kuleuven.be/~bioiuser/eXtasy/ !
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