Differential analysis of count data

Wolfgang Huber EMBL

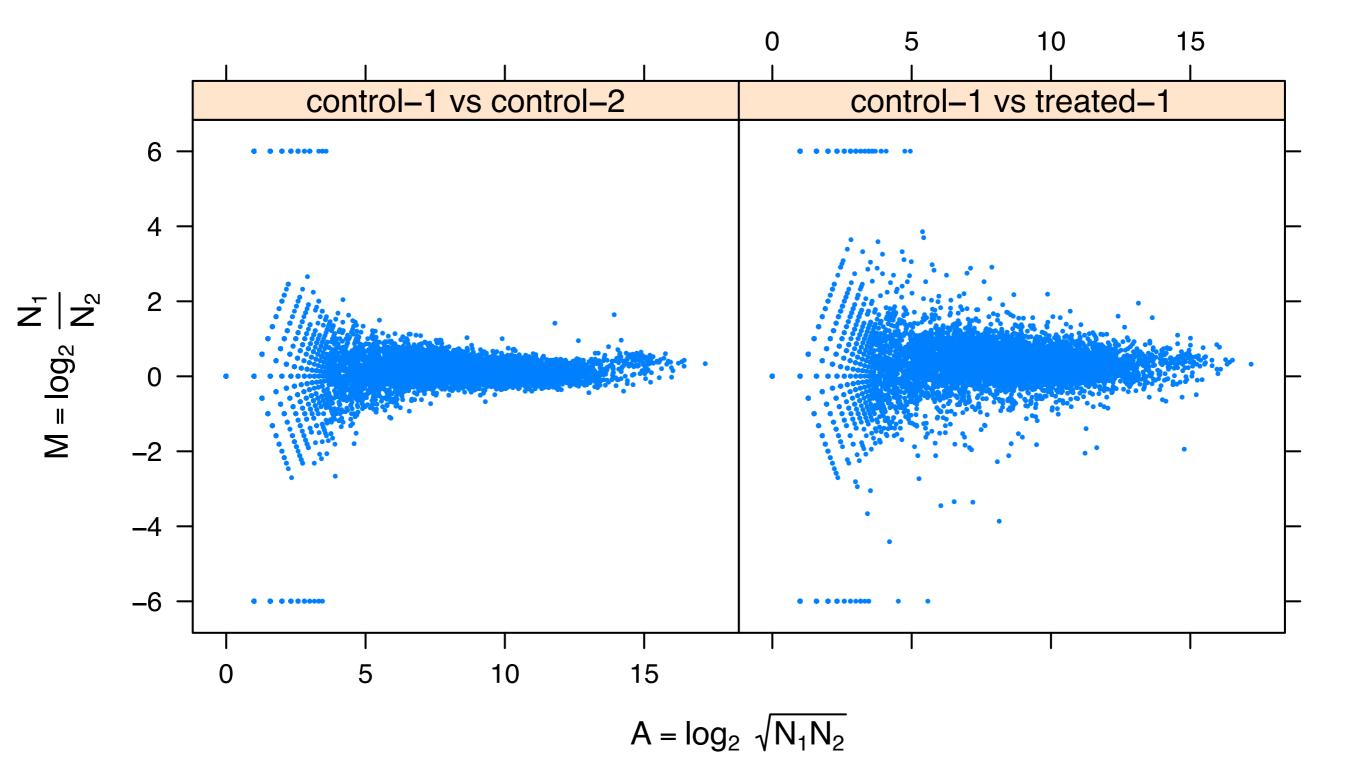
23 September 2013 - Tübingen

Count data

Gene	GliNS1	G144	G166	G179	CB541	CB660
13CDNA73	4	0	6	1	0	5
A2BP1	19	18	20	7	1	8
A2M	2724	2209	13	49	193	548
A4GALT	0	0	48	0	0	0
AAAS	57	29	224	49	202	92
AACS	1904	1294	5073	5365	3737	3511
AADACL1	3	13	239	683	158	40
[]						

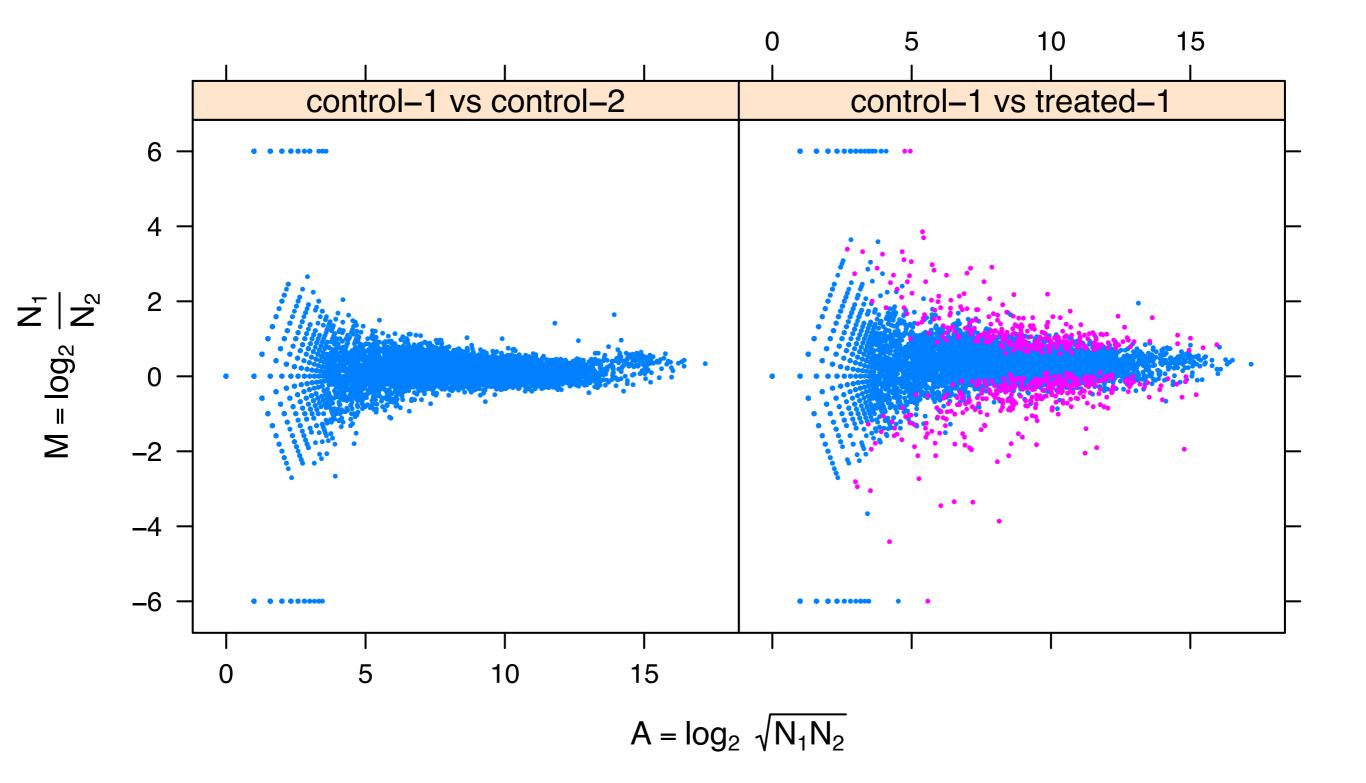
- RNA-Seq
- ChIP-Seq
- HiC
- Barcode-Seq
- Peptides in mass spec

. . .



two biological replicates

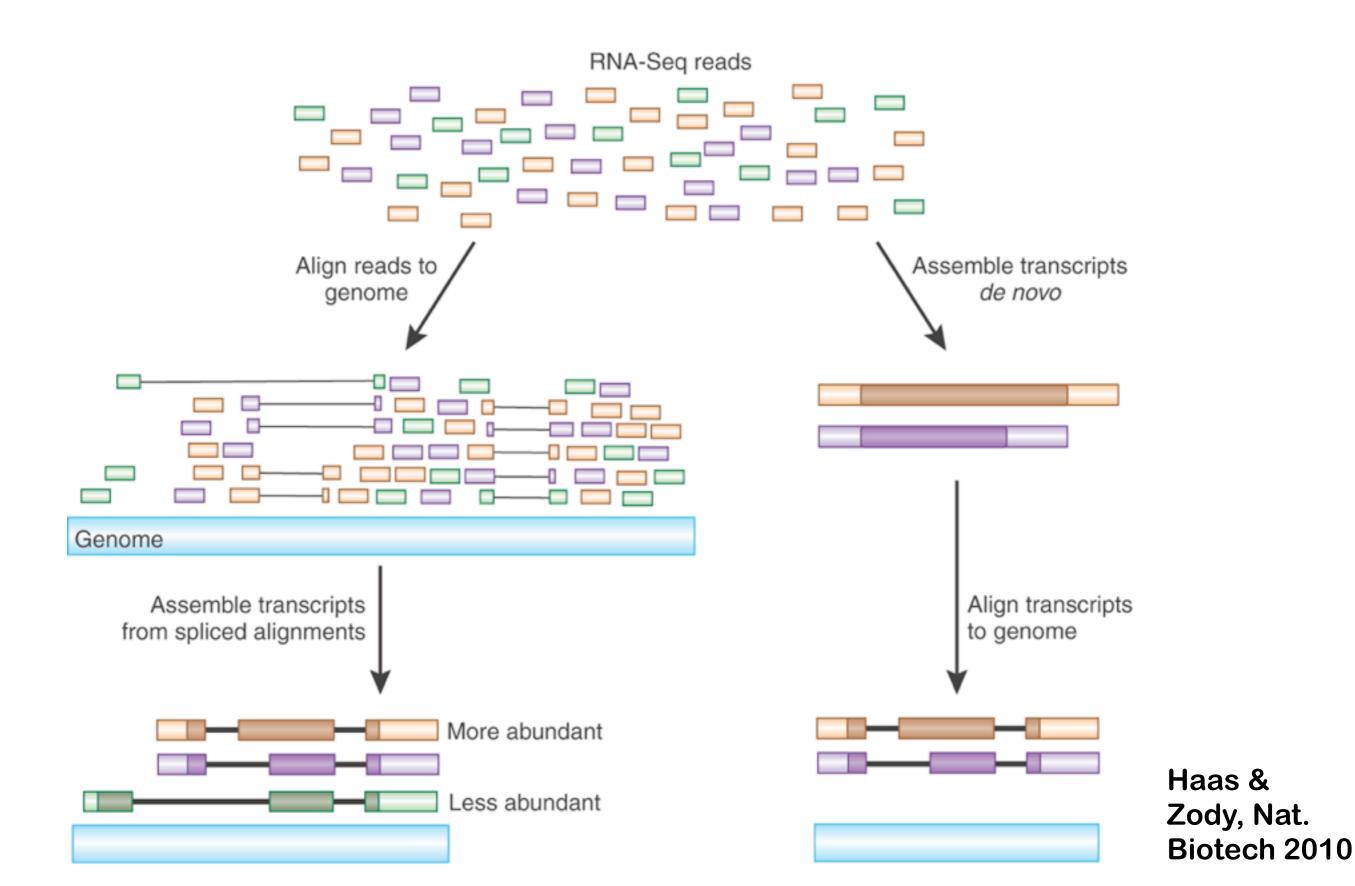
treatment vs control



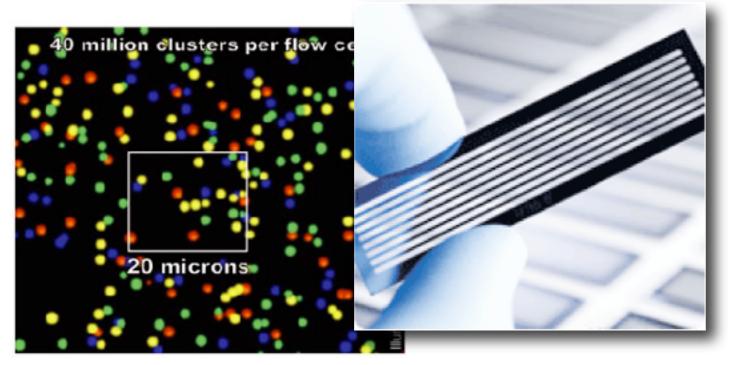
two biological replicates

treatment vs control

"2nd generation" sequencing



"2nd generation" sequencing



Solexa HiSeq 2500 1 run (11 days): ca. 3x10⁹ reads @ 2x100nt (≈ 6 human genomes 30x) ca. 5 k€ (marginal cost)

Applications

Genomes of new species Individual genomes Metagenomes Cancer genomes

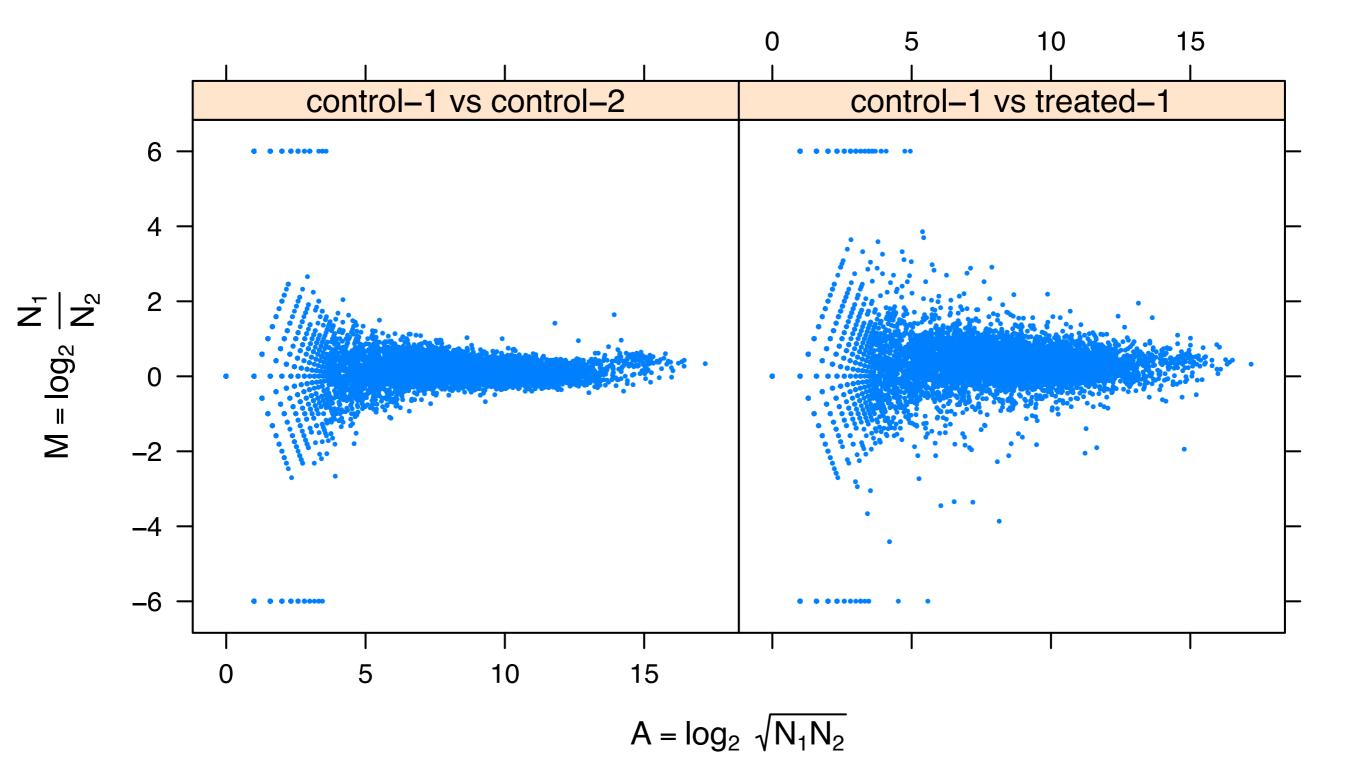
Transcriptome sequencing (RNA-Seq)

Protein-DNA binding (ChIP-Seq)

Protein-RNA binding (CLIP-Seq, RIP-Seq)

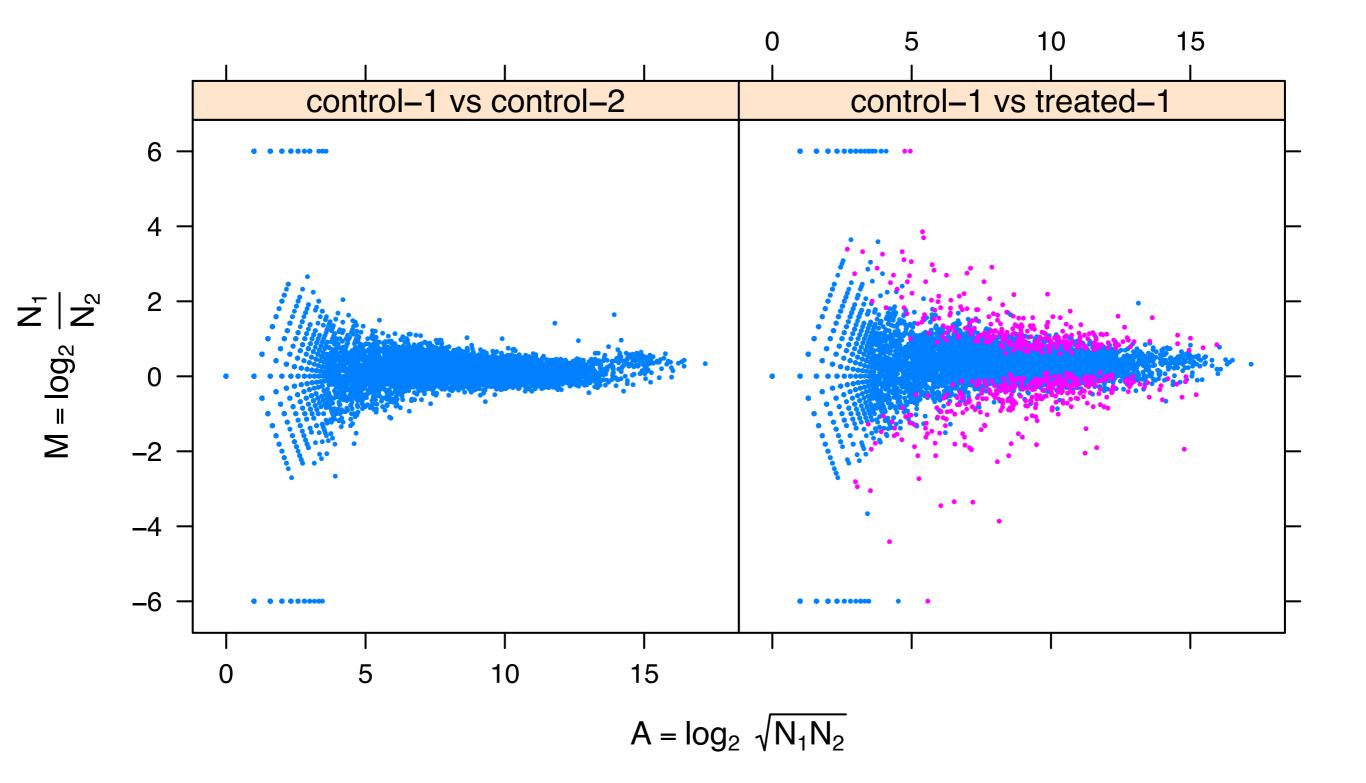
3D-structure of the nuclear DNA (Hi-C & Co.)

On the horizon: much longer reads ability to assign reads to individual chromosomes, cells



two biological replicates

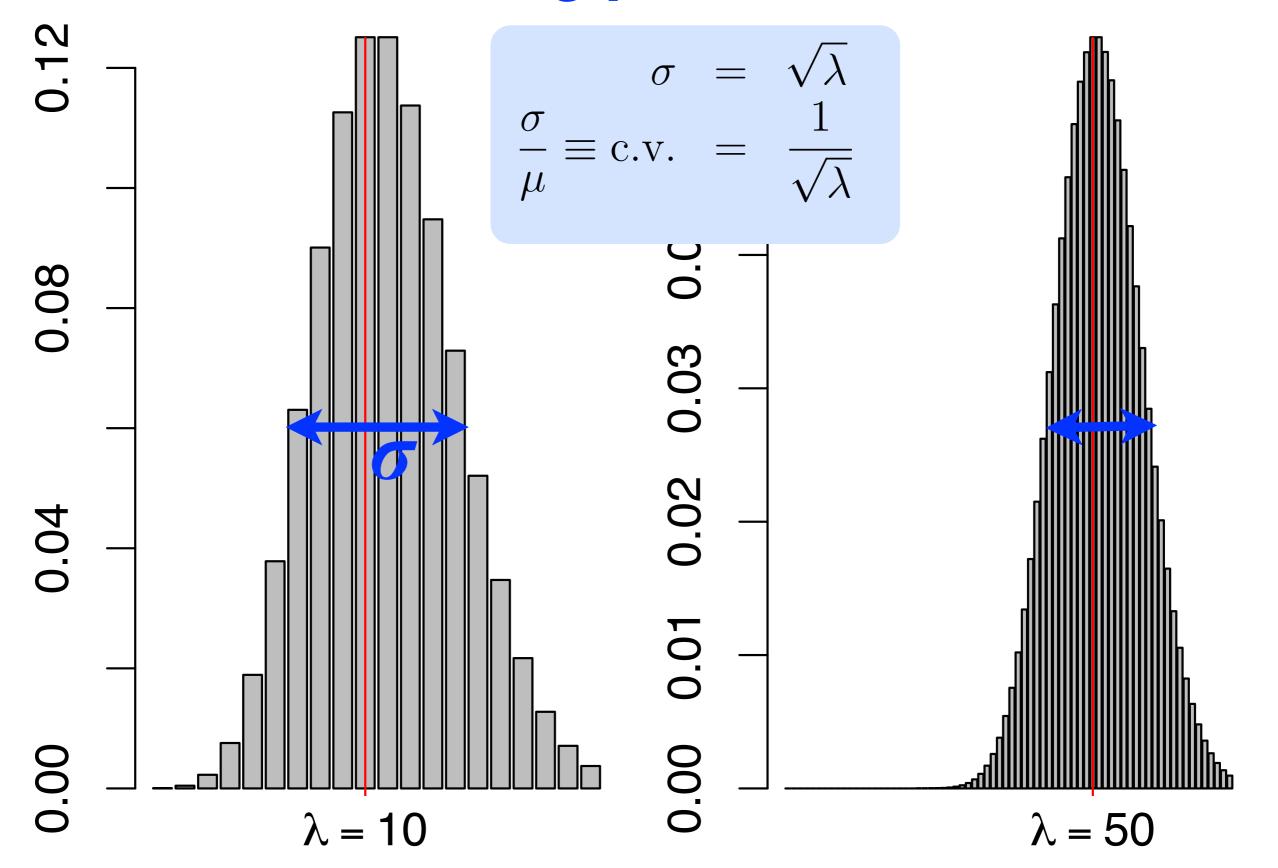
treatment vs control



two biological replicates

treatment vs control

The Poisson distribution is used for counting processes

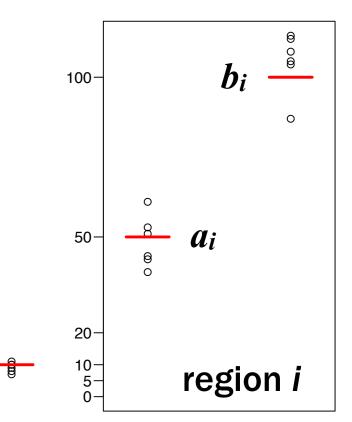


Analysis method: ANOVA

$$N_{ij} \sim \mathrm{Poisson}(\mu_{ij})$$
 Noise part

$$\mu_{ij} = s_j \times \begin{cases} a_i & \text{if } j \in \text{group A} \\ b_i & \text{if } j \in \text{group B} \end{cases}$$

- μ_{ij} expected count of region *i* in sample *j*
- s_j library size factor
- x_{kj} design matrix
- β_{ik} (differential) effect for region *i*

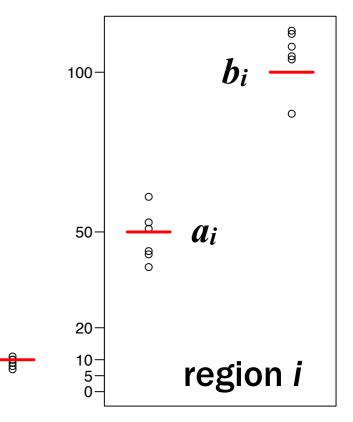


Analysis method: ANOVA

$$N_{ij} \sim \mathrm{Poisson}(\mu_{ij})$$
 Noise part

$$\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj}$$

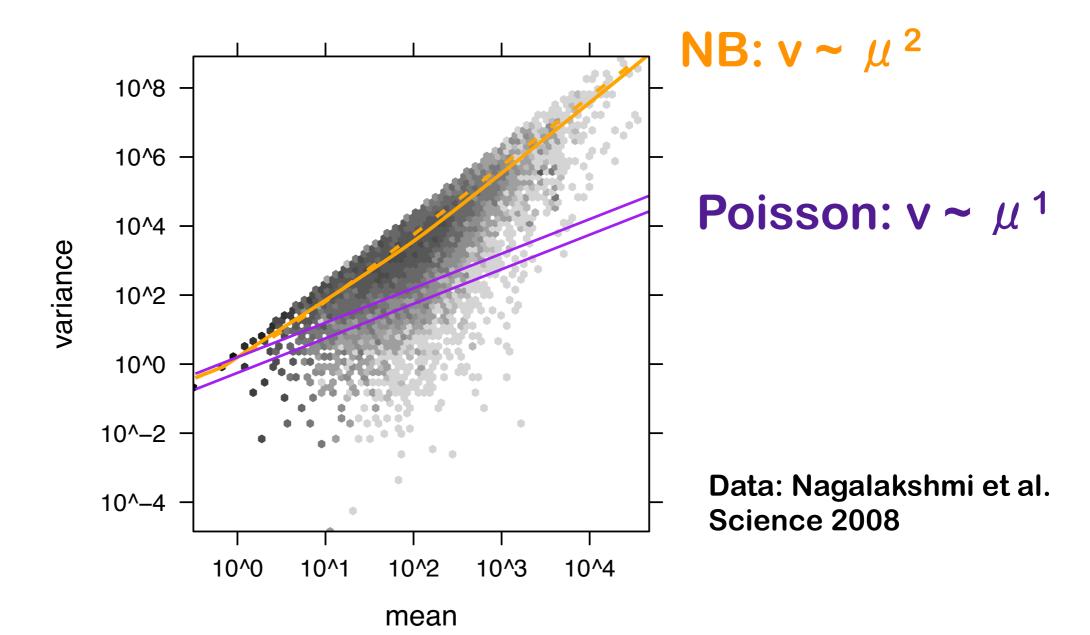
Systematic part



- μ_{ij} expected count of region *i* in sample *j*
- s_j library size factor
- x_{kj} design matrix
- β_{ik} (differential) effect for region *i*

- For Poisson-distributed data, the variance is equal to the mean.
- No need to estimate the variance. This is convenient.
- E.g. Wang et al. (2010), Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010), ...

- For Poisson-distributed data, the variance is equal to the mean.
- No need to estimate the variance. This is convenient.
- E.g. Wang et al. (2010), Bloom et al. (2009), Kasowski et al. (2010), Bullard et al. (2010), ...



So we need a better way

data are discrete, positive, skewed
→ no (log-)normal model

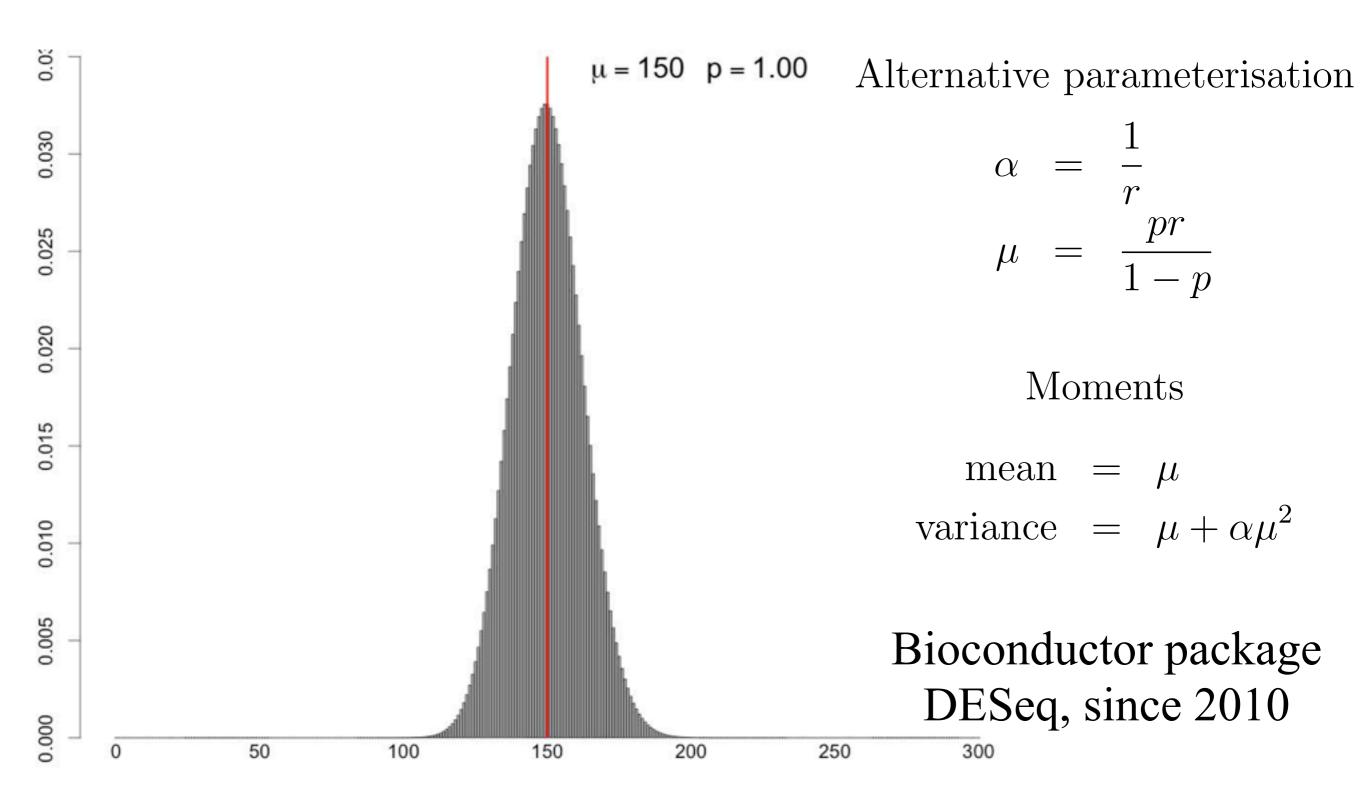
small numbers of replicates

- no rank based or permutation methods
- want to use parametric stochastic model to infer tail behaviour (approximately) from low-order moments (mean, variance)

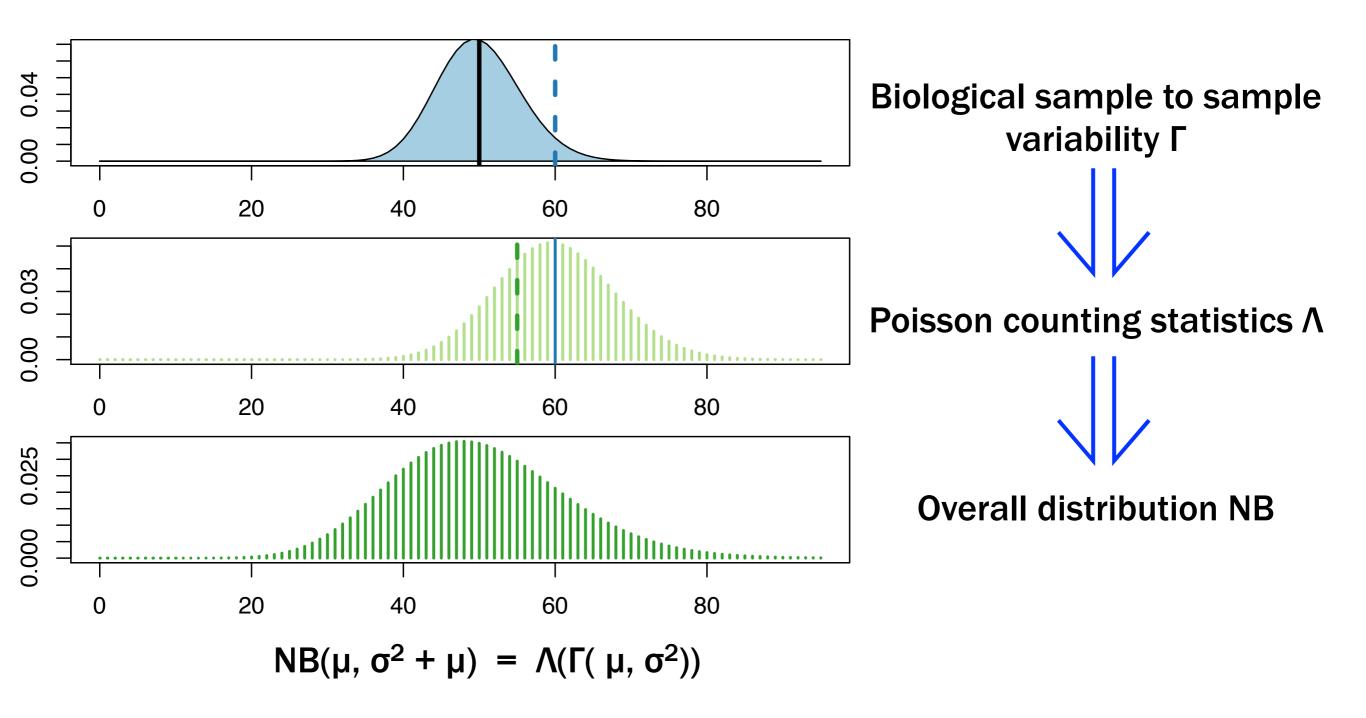
large dynamic range (0 ... 10⁵)
 → heteroskedasticity matters

The negative-binomial distribution

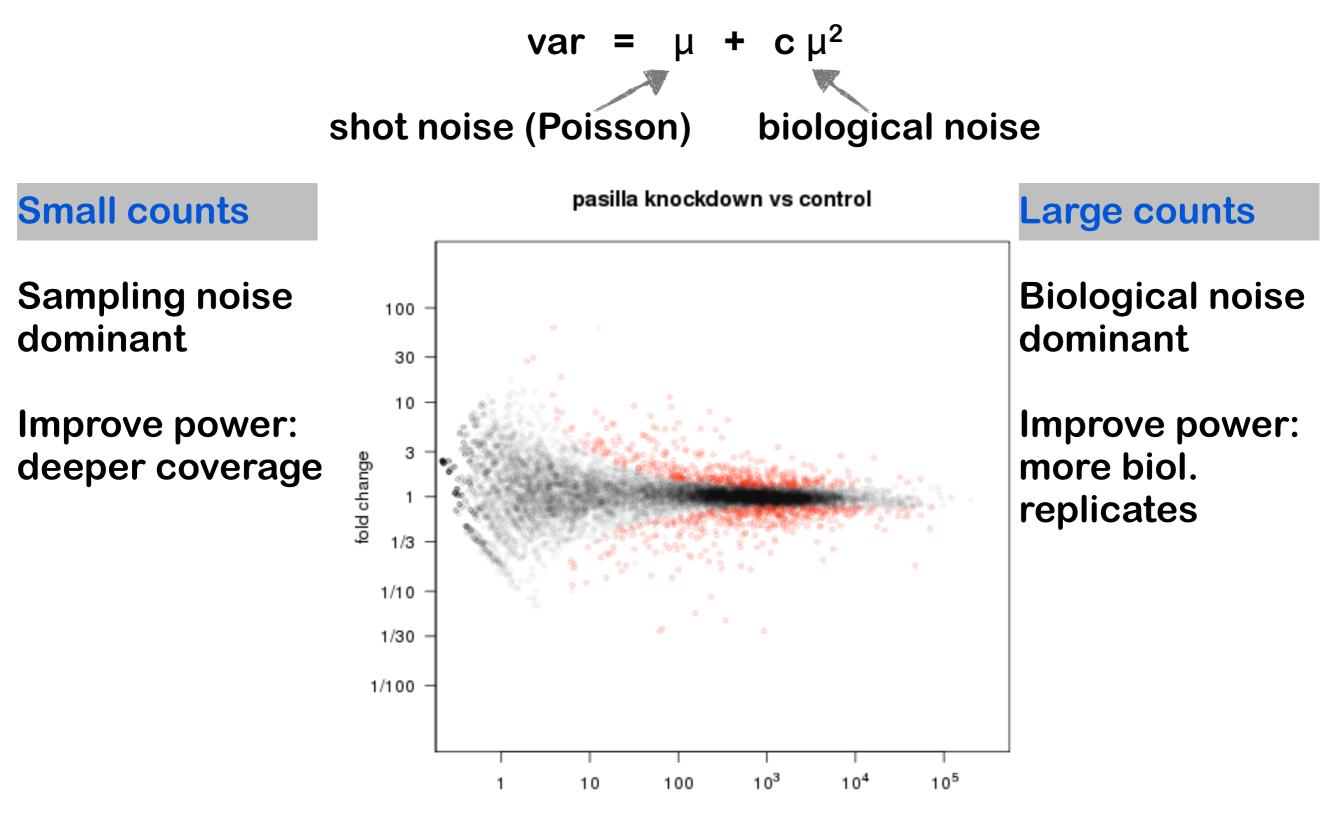
$$P(K = k) = \begin{pmatrix} k + r - 1 \\ r - 1 \end{pmatrix} p^r (1 - p)^k, \qquad r \in \mathbb{R}^+, \ p \in [0, 1]$$



The NB distribution models a Poisson process whose rate is itself randomly varying



Two component noise model



averaged normalized count

Generalised linear model of the negative binomial family

$$N_{ij} \sim \operatorname{NB}(\mu_{ij}, \alpha_{ij})$$
 Noise part

$$\log \mu_{ij} = s_j + \sum_k \beta_{ik} x_{kj}$$
 Systematic part

- μ_{ij} expected count of gene *i* in sample *j*
- s_j library size effect
- x_{kj} design matrix
- β_{ik} (differential) expression effects for gene *i*

What is a generalized linear model?

Y ~ *D*(*m*, *s*)

A GLM consists of three elements:

1. A probability distribution *D* (from the exponential family), with mean E[Y] = m and dispersion s

2. A linear predictor $\eta = X \beta$

3. A link function g such that $g(m) = \eta$.

Ordinary linear model: g = identity, D = NormalDESeq(2), edgeR, ...: $g = \log$, D = Negative Binomial

design with a blocking factor

Sample	treated	sex
S1	no	male
S2	no	male
S3	no	male
S4	no	female
S5	no	female
S6	yes	male
S7	yes	male
S8	yes	female
S9	yes	female
S10	yes	female

GLM with blocking factor

$$K_{ij} \sim NB(s_j \mu_{ij}, lpha_{ij})$$
 i: genes j: samples

full model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\mathrm{S}} x_j^{\mathrm{S}} + \beta_i^{\mathrm{T}} x_j^{\mathrm{T}}$$

reduced model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^S x_j^S$$

GLMs: Interaction

$$K_{ij} \sim NB(s_j \mu_{ij}, \alpha_{ij})$$

full model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\mathrm{S}} x_j^{\mathrm{S}} + \beta_i^{\mathrm{T}} x_j^{\mathrm{T}} + \beta_i^{\mathrm{I}} x_j^{\mathrm{S}} x_j^{\mathrm{T}}$$

reduced model for gene *i*:

$$\log \mu_{ij} = \beta_i^0 + \beta_i^{\mathrm{S}} x_j^{\mathrm{S}} + \beta_i^{\mathrm{T}} x_j^{\mathrm{T}}$$

GLMs: paired designs

- Often, samples are paired (e.g., a tumour and a healthy-tissue sample from the same patient)
- Then, using pair identity as blocking factor improves power.

full model:

$$\log \mu_{ijl} = \beta_i^0 + \begin{cases} 0 & \text{for } l = 1 \text{(healthy)} \\ \beta_i^T & \text{for } l = 2 \text{(tumour)} \end{cases}$$

reduced model:

$$\log \mu_{ij} = \beta_i^0$$

- *i* gene
- j subject
- l tissue state

Generalized linear models

Simple design:

Two groups, e.g. control and treatment

Common complex designs:

- Designs with blocking factors
- Factorial designs
- Designs with interactions
- Paired designs

GLMs: Dual-assay designs (e.g.: CLIP-Seq + RNA-Seq)

How does affinity of an RNA-binding protein to mRNA change under a (drug, RNAi) treatment?

For each sample, we are interested in the ratio of CLIP-Seq to RNA-Seq reads. How is it affected by treatment?

full model:

count ~ assayType + treatment + assayType : treatment

reduced model:

count ~ assayType + treatment

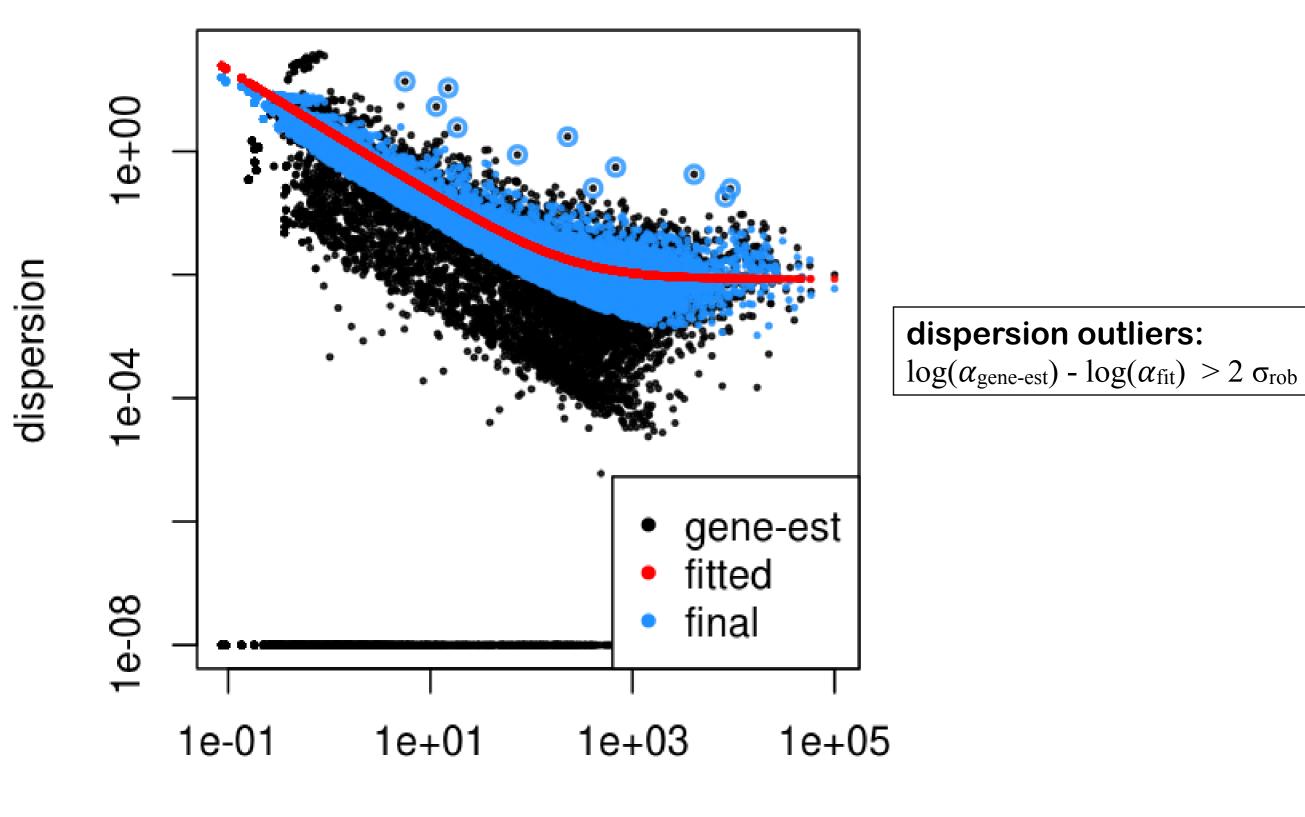
Zarnack et al., Cell 2013

Modelling Variance

To assess the variability in the data from one gene, we have

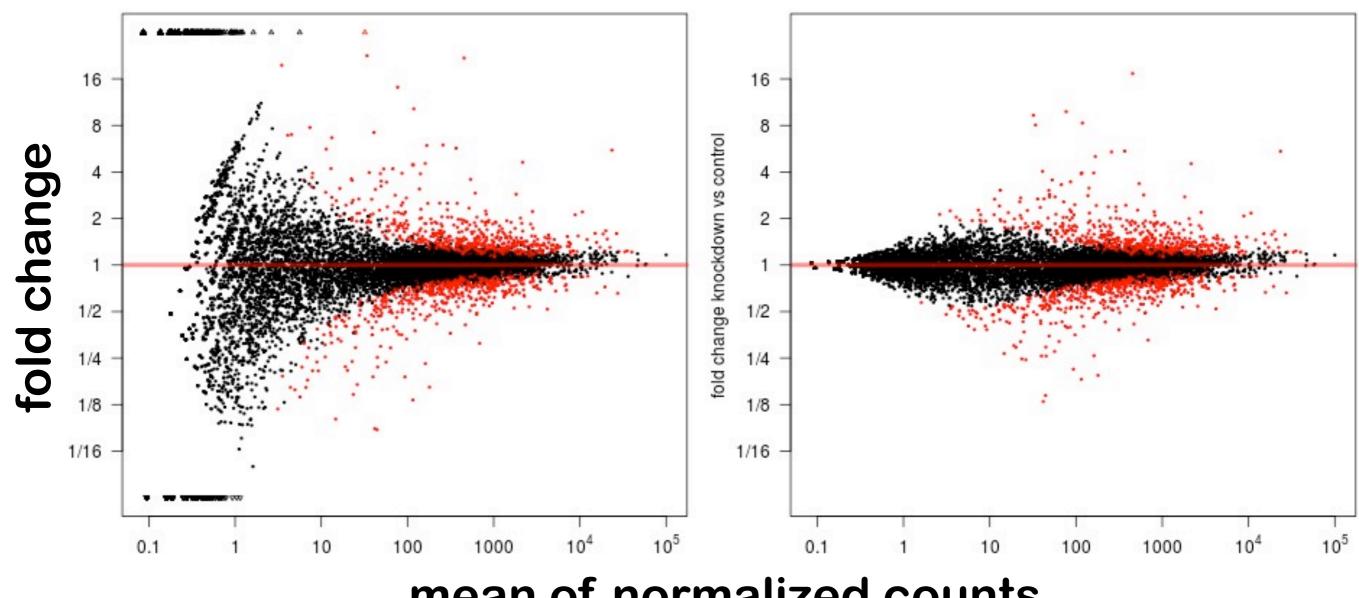
- the observed standard deviation for that gene
- that of all the other genes
- ⇒ridge (Tikhonov) regularisation, empirical Bayes

Dispersion estimation: shrinkage



mean of normalized counts

Beta (estimated effects): shrinkage



mean of normalized counts

The mechanics: empirical Bayes shrinkage of gene-wise dispersion estimates and of (non-intercept) βs

$$\hat{\alpha}_{\mathrm{MLE}} = \operatorname*{argmax}_{\alpha} \ell(\alpha|y,\hat{\mu}) \qquad \qquad \text{``naive'' GLM likelihood}$$

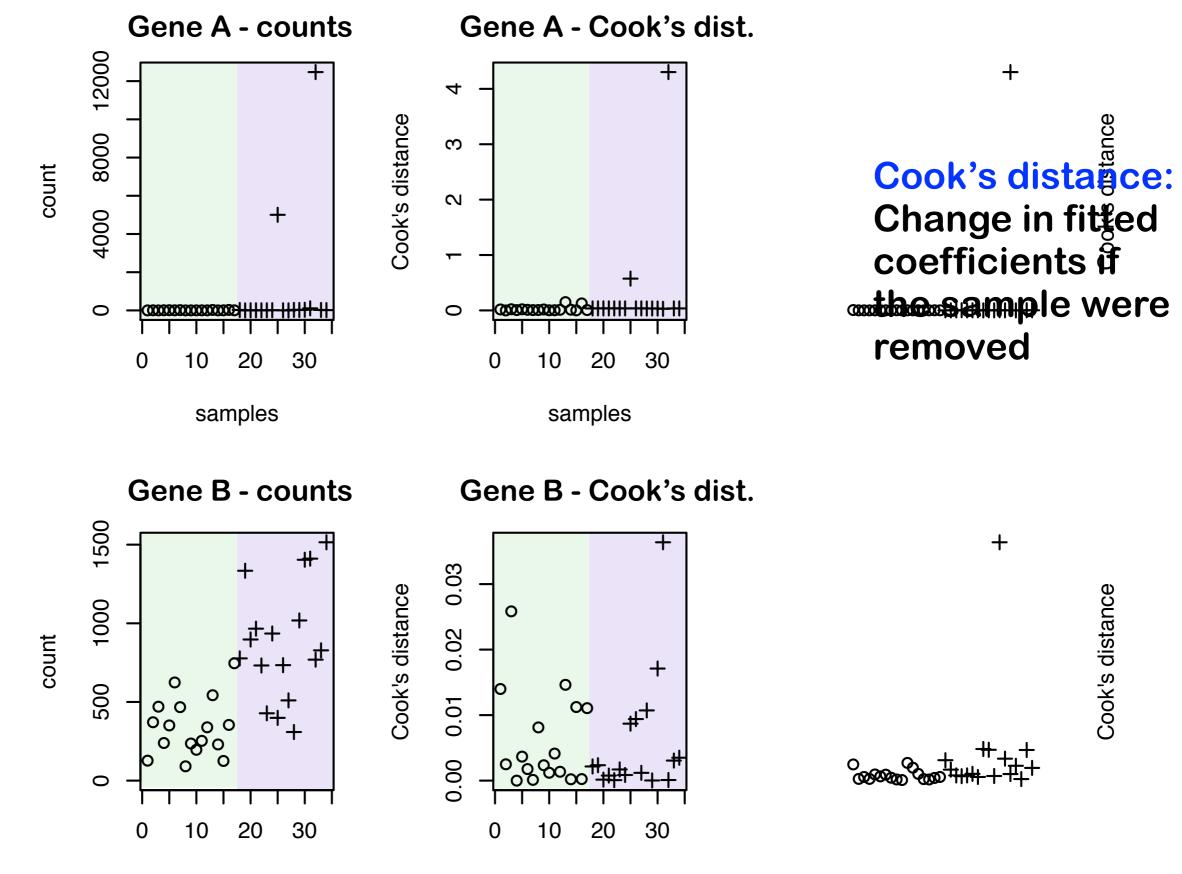
$$\operatorname{CR}(\alpha) = -\frac{1}{2}\log(\det(X^t W X))$$
 Cox-Reid bias term

 $\hat{\alpha}_{CR} = \underset{\alpha}{\operatorname{argmax}} \left(\ell(\alpha | y, \hat{\mu}) + CR(\alpha) \right)$ bias-co

 $\operatorname{prior}(\alpha) = \log(f_{\mathcal{N}}(\log(\alpha); \log(\alpha_{\operatorname{fit}}), \sigma_{\operatorname{prior}}^2) \quad \text{prior on } \alpha \text{ by 'information} \\ \text{ sharing' across genes}$

$$\hat{\alpha}_{\text{CR-MAP}} = \operatorname*{argmax}_{\alpha} \left(\ell(\alpha|y,\hat{\mu}) + \text{CR}(\alpha) + \text{prior}(\alpha) \right) \qquad \qquad \text{penalized} \\ \text{likelihood}$$

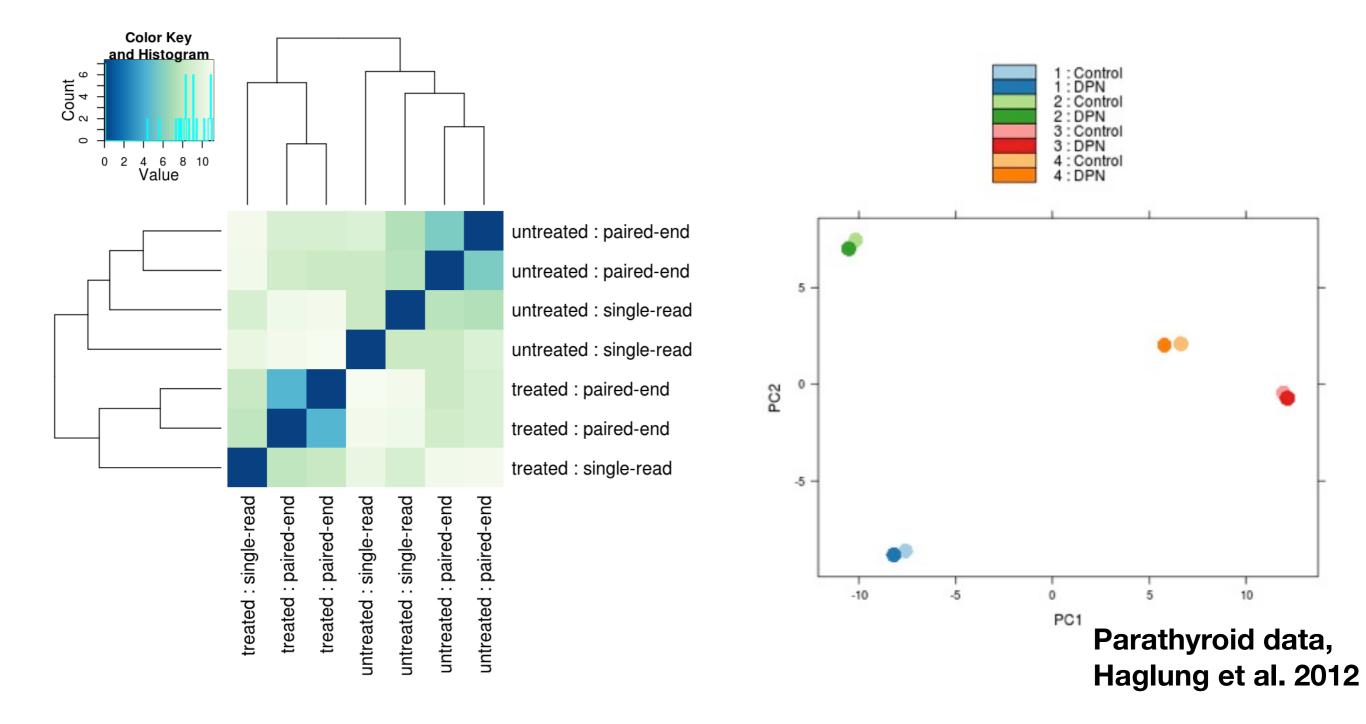
Outlier robustness



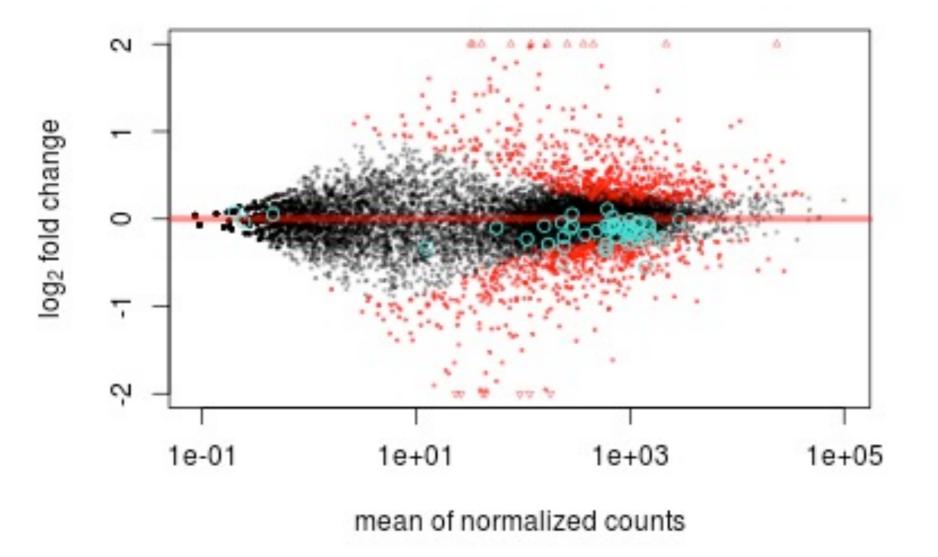
samples

samples

regularized log-transformation: visualization, clustering, PCA



GSEA with shrunken log fold changes



Fly cell culture, knock-down of *pasilla* versus control (Brooks et al., 2011) turquoise circles:

Reactome Path "APC/C-mediated degradation of cell cycle proteins" 56 genes, avg LFC: -0.15, p value: 4·10⁻¹¹ (t test)

Genes and transcripts

So far, we looked at read counts per gene.

A gene's read count may increase

because the gene produces more transcripts

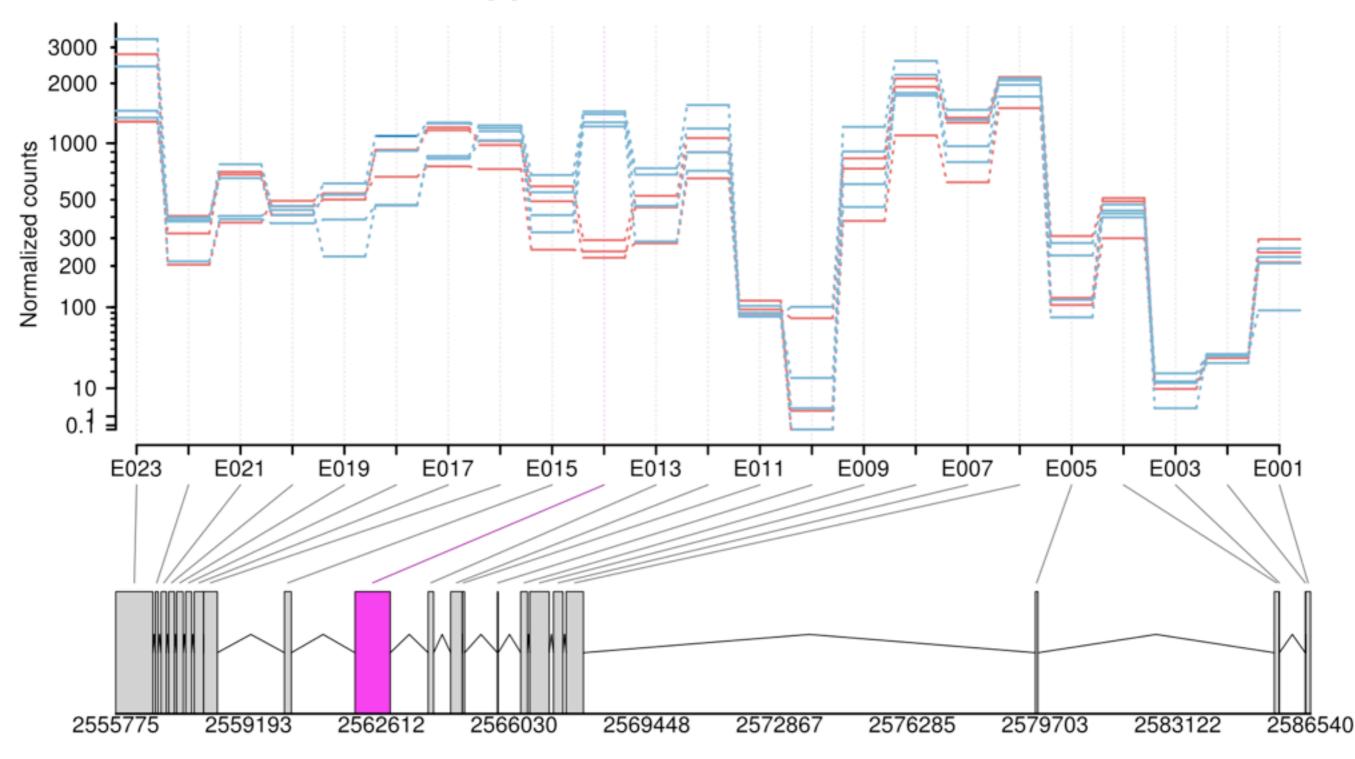
because the gene produces longer transcripts

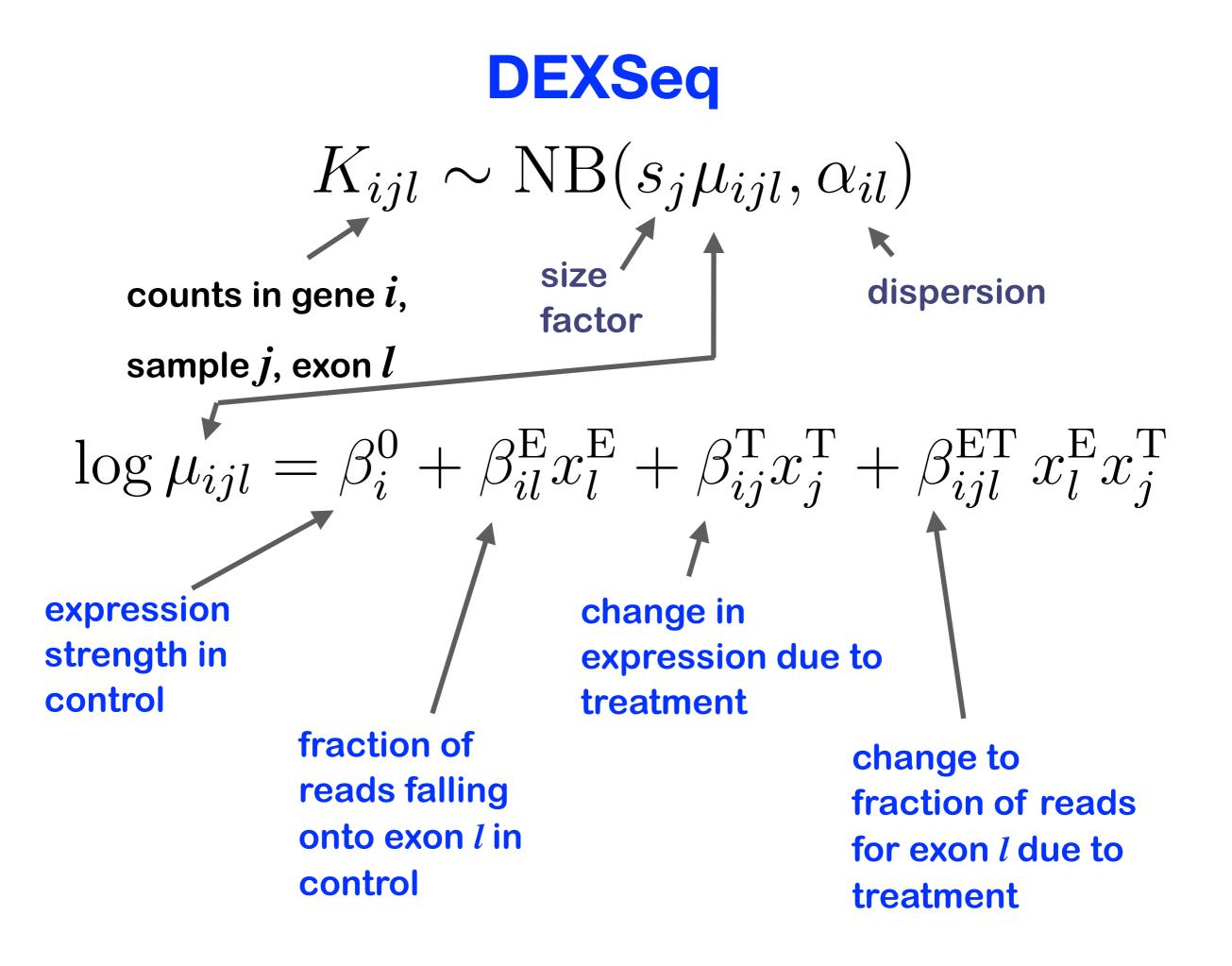
How to look at gene sub-structure?

Differential exon usage

msn - mishappen

treated



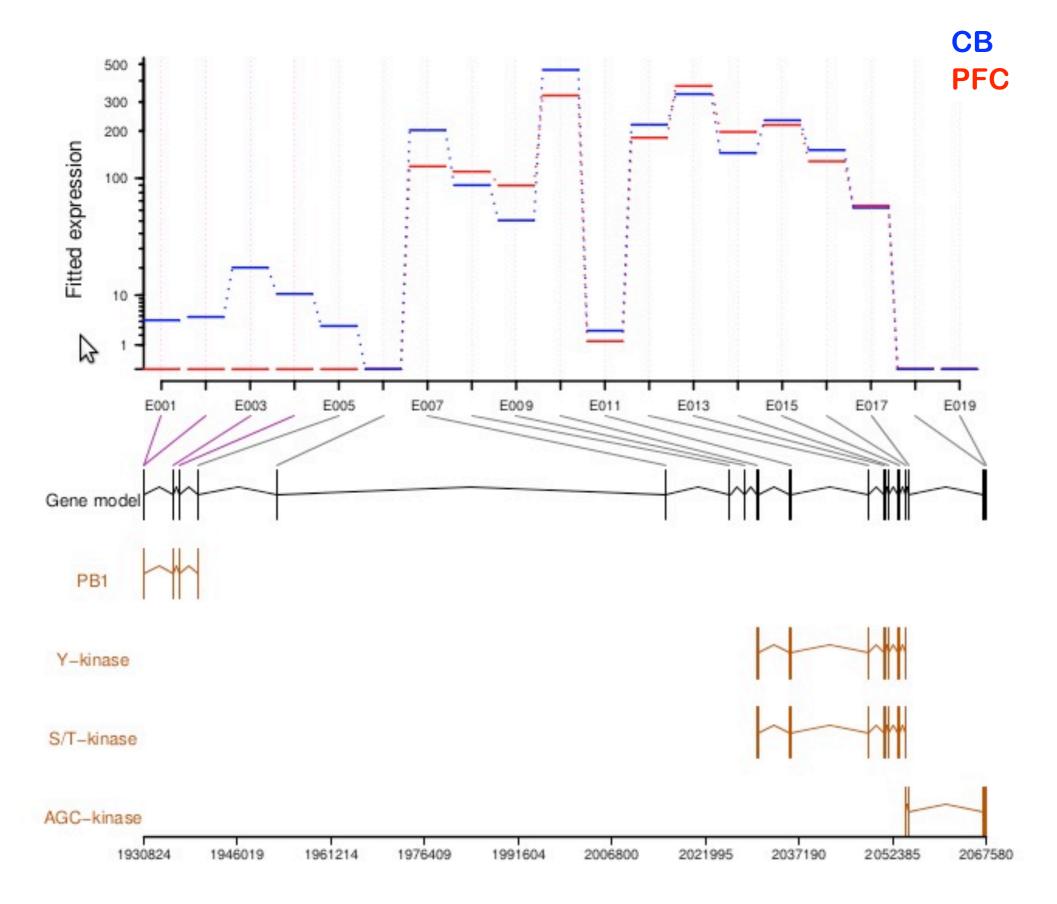


test for changes in the (relative) usage of exons:

number of reads mapping to the exon

number of reads mapping to the other exons of the same gene

Differential exon usage - example



long form: PKC-zeta

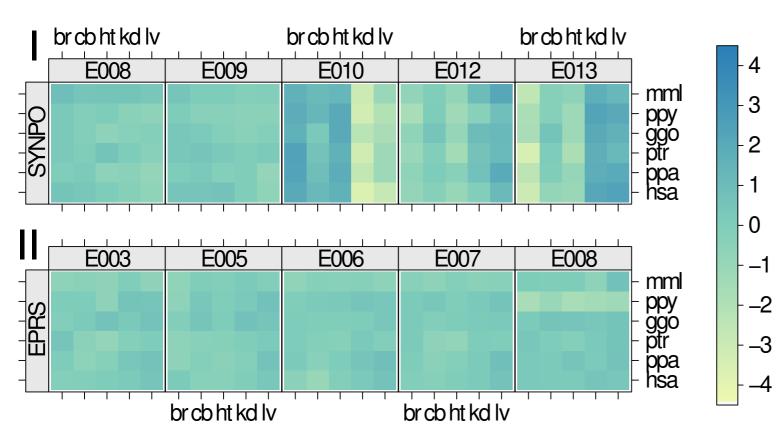
N-term. truncated: PKM-zeta

Drift and conservation of differential exon usage across tissues in primate species

Alejandro Reyes^{* †}, Simon Anders^{* †}, Robert J. Weatheritt [‡], Toby Gibson [‡], Lars M. Steinmetz ^{† §} and Wolfgang Huber [†]

[†]Genome Biology Unit,[‡]Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany, and [§]Stanford Genome Technology Center, Stanford University, 855 California Ave, Palo Alto, CA 94304, USA

PNAS (accepted)



Most tissue-dependent alternative

exon usage in primates is

- low amplitude,
- noise
- little evidence for conservation
- A significant fraction is
- high amplitude
- conserved
- often associated with UTRs (mRNA life-cycle & localisation, translation regulation) and unstructured protein regions (PPI)

Simon Anders Joseph Barry Bernd Fischer Julian Gehring Bernd Klaus Felix Klein Michael Love Malgorzata Oles Aleksandra Pekowska Paul-Theodor Pyl Alejandro Reyes

Jan Swedlow

Collaborators

Lars Steinmetz Robert Gentleman (Genentech) Michael Boutros (DKFZ) Martin Morgan (FHCRC) Jan Korbel Magnus Rattray (Manchester)

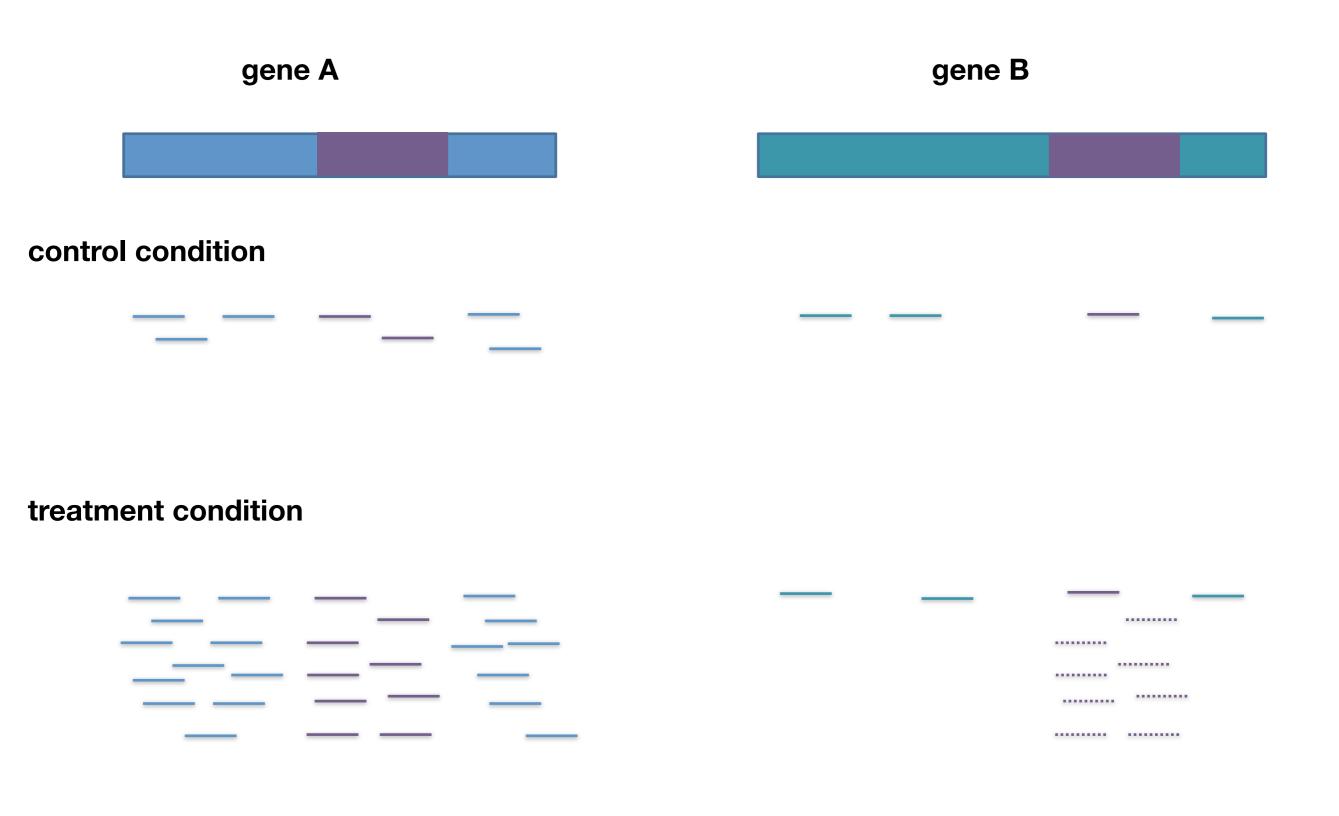
Special thanks

to all users who provided feed-back

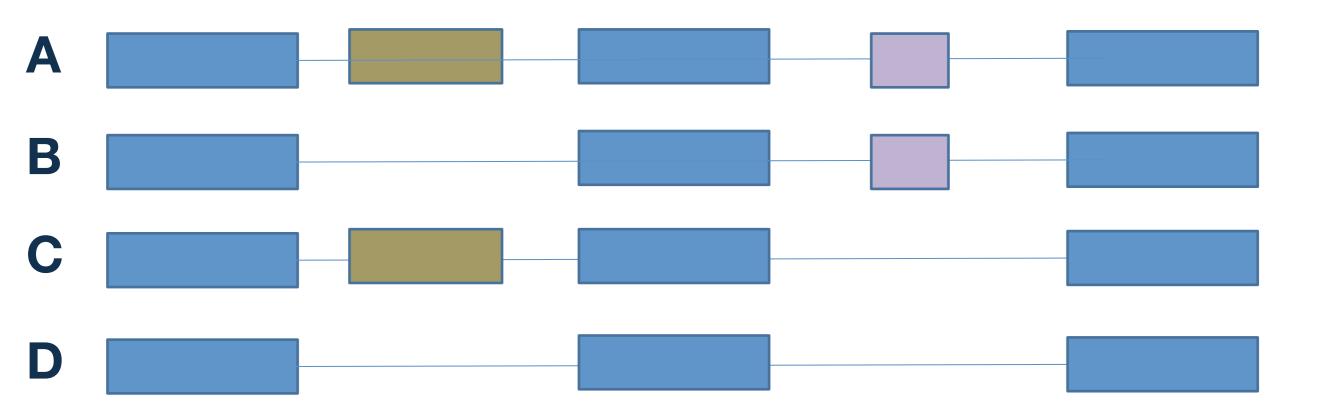
Counting rules (RNA-Seq)

- Count unique fragments, not bases
- Discard a read if
 - it cannot be uniquely mapped
 - its alignment overlaps with several genes
 - the alignment quality is bad
 - (for paired-end reads) the mates do not map to the same gene

Why we discard non-unique alignments



Differential usage of exons or of isoforms?



Group 1	Group 2	DEXSeq 1.1.5	cuffdiff 1.3.0		
proper comparison, PFC vs CB:					
PFC $1 - PFC 6$	CB 1, CB 2	650	114		
PFC 1, PFC 2 $$	CB 1, CB 2	56	230		
PFC 1, PFC 3	CB 1, CB 2	18	361		
PFC 1, PFC 4	CB 1, CB 2	26	370		
PFC 1, PFC 5	CB 1, CB 2	32	215		
PFC 1, PFC 6	CB 1, CB 2	27	380		
m	ock comparisons,	PFC vs PFC :			
PFC 1, PFC 3	PFC 2, PFC 4	3	405		
PFC 1, PFC 2 $$	PFC 3, PFC 4	0	399		
PFC 1, PFC 4	PFC 2, PFC 3	244	590		
PFC 1, PFC 3	PFC 2, PFC 5	2	628		
PFC 1, PFC 2 $$	PFC 3, PFC 5	1	499		
PFC 1, PFC 5	PFC 2, PFC 3	2	555		
PFC 1, PFC 4	PFC 2, PFC 5	2	460		
PFC 1, PFC 2 $$	PFC 4, PFC 5	2	504		
PFC 1, PFC 5	PFC 2, PFC 4	2	308		
PFC 1, PFC 4	PFC 3, PFC 5	10	497		
PFC 1, PFC 3	PFC 4, PFC 5	5	554		
PFC 1, PFC 5	PFC 3, PFC 4	0	353		
PFC 2, PFC 4	PFC 3, PFC 5	1	476		
PFC 2, PFC 3	PFC 4, PFC 5	10	823		
PFC 2, PFC 5	PFC 3, PFC 4	0	526		

Table S2: Results of the comparison for the Brawand et al. data.

Group 1	Group 2	DEXSeq 1.1.5	cuffdiff 1.3.0		
proper comparison, PFC vs CB:					
PFC $1 - PFC 6$	CB 1, CB 2	650	114		
PFC 1, PFC 2 $$	CB 1, CB 2	56	230		
PFC 1, PFC 3	CB 1, CB 2	18	361		
PFC 1, PFC 4	CB 1, CB 2	26	370		
PFC 1, PFC 5	CB 1, CB 2	32	215		
PFC 1, PFC 6	$\mathrm{CB}\ 1,\ \mathrm{CB}\ 2$	27	380		
mock comparisons, PFC vs PFC :					
PFC 1, PFC 3	PFC 2, PFC 4	3	405		
PFC 1, PFC 2 $$	PFC 3, PFC 4	0	399		
PFC 1, PFC 4	PFC 2, PFC 3	244	590		
PFC 1, PFC 3	PFC 2, PFC 5	2	628		
PFC 1, PFC 2 $$	PFC 3, PFC 5	1	499		
PFC 1, PFC 5	PFC 2, PFC 3	2	555		
PFC 1, PFC 4	PFC 2, PFC 5	2	460		
PFC 1, PFC 2	PFC 4, PFC 5	2	504		
PFC 1, PFC 5	PFC 2, PFC 4	2	308		
PFC 1, PFC 4	PFC 3, PFC 5	10	497		
PFC 1, PFC 3	PFC 4, PFC 5	5	554		
PFC 1, PFC 5	PFC 3, PFC 4	0	353		
PFC 2, PFC 4	PFC 3, PFC 5	1	476		
PFC 2, PFC 3	PFC 4, PFC 5	10	823		
PFC 2, PFC 5	PFC 3, PFC 4 $$	0	526		

More genes with less replicates

Table S2: Results of the comparison for the Brawand et al. data.

Group 1	Group 2	DEXSeq 1.1.5	cuffdiff 1.3.0	
]	proper comparisor			
PFC $1 - PFC 6$	CB 1, CB 2	650	114	
PFC 1, PFC 2 $$	CB 1, CB 2	56	230	
PFC 1, PFC 3	CB 1, CB 2	18	361	More genes
PFC 1, PFC 4	CB 1, CB 2	26	370	with less
PFC 1, PFC 5	CB 1, CB 2	32	215	replicates
PFC 1, PFC 6	CB 1, CB 2	27	380	rophoatoo
n	nock comparisons,	PFC vs PFC :		
PFC 1, PFC 3	PFC 2, PFC 4	3	405	
PFC 1, PFC 2 $$	PFC 3, PFC 4	0	399	
PFC 1, PFC 4	PFC 2, PFC 3	244	590	
PFC 1, PFC 3	PFC 2, PFC 5	2	628	
PFC 1, PFC 2	PFC 3, PFC 5	1	499	
PFC 1, PFC 5	PFC 2, PFC 3	2	555	
PFC 1, PFC 4	PFC 2, PFC 5	2	460	
PFC 1, PFC 2 $$	PFC 4, PFC 5	2	504	More genes
PFC 1, PFC 5	PFC 2, PFC 4	2	308	with
PFC 1, PFC 4	PFC 3, PFC 5	10	497	same-same
PFC 1, PFC 3	PFC 4, PFC 5	5	554	_
PFC 1, PFC 5	PFC 3, PFC 4	0	353	comparison
PFC 2, PFC 4	PFC 3, PFC 5	1	476	
PFC 2, PFC 3	PFC 4, PFC 5	10	823	
PFC 2, PFC 5	PFC 3, PFC 4	0	526	

Table S2: Results of the comparison for the Brawand et al. data.

likelihood ratio vs Wald test

- LRT reported to be more powerful in many applications
- but difficult to reconcile with the β-shrinkage. With null data:
- Wald statistics ≈ Normal → uniform p-values
- Differences in deviance: not X² (pile up at zero) → nonuniform p-values (piling up at 1) (Without β-shrinkage: similar)
- Wald tests allow (easily) banded hypotheses tests ($|\beta| < c, |\beta| > c$)