ITN March-Retreat Project Report
Implementing Complex Mathematical Expressions
using Python

Max Zwiefsele
March 18, 2015

Many mathematical models depend on optimizing an objective function with respect to its
parameters, which have to be found from the data itself. In maths, maximizing a function with
respect to its parameters usually involves going along the gradient space, which is spanned by
the parameters. One can think of a ball, rolling down a valley, to eventually find the lake at
the bottom (the optimial point of parameters). One problem of complex modeling and complex
expressions is that the gradients for the parameters can be hard to derive, and therefore, a quick
prototyping of new ideas is restricted.

In our project we combined two projects into one framework, which allows quick proto-
typing of gradient based optimization, without the need to explicitly write down the gradients
of the objective function at hand, called SymDiffPy (https://github.com/mzwiessele/
SymDiffPy).

We used GPy (https://github.com/SheffieldML/GPy) in order to handle parame-
ters and optimization in order to give an easy to use handle on the parameters and objective
function. GPy was originally designed for parameter optimization of the so called Gaussian
process, which is a probabilistic objective function. Its efficient parameter handling and easy
to use object oriented implementation makes it the perfect candidate for a project of function
optimizing.

For the second step of computing the gradient of the objective functions at hand, we used
the so-called package Theano (http://deeplearning.net/software/theano/), which
is able to automatically compute gradients for mathematical expressions. This provides a the
gradients at almost no cost of speed for (almost) any algebraic mathematical expression.

We achieved fully working implementation of a GP, with several covariance functions, which
are the deciding factor of the form of the learned function (Linear, smooth, jagged, random walk
etc.). We provided several notebooks showing the results of the Gaussian Process implementa-
tion.

e Linear: http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/
master/notebooks/GP_example.ipynb

e Non Linear: http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/
blob/master/notebooks/GP_linear_example.ipynb

e Maona Loa CO2levels: http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/
blob/master/notebooks/Mauna%20Loa%20C02.ipynb

I thank my collaborators Meiwen, Victor, James and Daniel for their great work, I had a
wonderful time implementing and experimenting with GPy and Theano.


https://github.com/mzwiessele/SymDiffPy
https://github.com/mzwiessele/SymDiffPy
https://github.com/SheffieldML/GPy
http://deeplearning.net/software/theano/
http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/master/notebooks/GP_example.ipynb
http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/master/notebooks/GP_example.ipynb
http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/master/notebooks/GP_linear_example.ipynb
http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/master/notebooks/GP_linear_example.ipynb
http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/master/notebooks/Mauna%20Loa%20C02.ipynb
http://nbviewer.ipython.org/github/mzwiessele/SymDiffPy/blob/master/notebooks/Mauna%20Loa%20C02.ipynb

