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Context

increasing availability of electronically recorded health
outcome data

community and/or individual level

accruing in “real-time”

often spatially referenced

prediction and/or explanation

case-studies:

monitoring progression towards end-stage renal failure
human and veterinary surveillance of gastro-enteric illness
local-scale malaria prevalence mapping
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Chronic renal failure: UK mortality data
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Diagnosis, treatment and survival

Diagnosis

Serum creatinine ⇒ estimated glomerular filtration rate

eGFR = 186×
(

SCr

88.4

)−1.154

× age−0.203(×0.742 if female)

progression can be asymptomatic for many years

SCr easy to measure from blood-sample

Treatment and survival

aggressive control of blood-pressure

renal replacement therapy: dialysis and transplantation

early diagnosis can slow rate of progression

Survival rate (%) to year
1 2 5 10

Dialysis 79.3 64.7 33.6 10.2
Transplant (living) 98.4 96.5 90.0 76.0
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Royal Salford Hospital, NW England

Clinical guideline

Loss of > 5% eGFR per year ⇒ refer to secondary care

Data

measurements Yij = log eGFR at times tij,

explanatory variables xi (age, sex)

i = 1, ..., m = 22, 910 “at-risk” primary care patients

j = 1, ..., ni ≤ 305 (median ni = 12)

0 ≤ 10.02 years follow-up (median 4.46)

Hi(t) = {xi, (tij, yij) : tij ≤ t}

Statistical objective

P

(
d

dt
log GFR < −0.05|Hi(t)

)
= ?
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Data: all cross-sectional
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Data: all cross-sectional and selected longitudinal
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Data: all cross-sectional and selected longitudinal
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Dynamic regression model

subjects i = 1, ..., n observed at times tij, j = 1, ...ni

Yij = log(eGFR)

expected value of Yij linear in initial age and time since
recruitment

rate of progression varies randomly:

between subjects: random effect Ui

within subjects: random effect Ci(tij)
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Dynamic Regression Model

Yij = α0 + α1 × I(female)

+ α2 × agei1 + α3 × (ageij − agei1) + α4 ×max(0, ageij − 56.5)

+ Ui + Ci(tij) + Zij

Zij: measurement error, N(0, τ 2)

Ui: between-subject random intercept, N(0, ω2)

Ci(t): within-subject stochastic process

Model Ci(t) as integrated Brownian motion

Ci(t) =

∫ t

0

Bi(u)du

Bi(u)|Bi(s) ∼ N
(
Bi(u), (u− s)σ2

)
Bi(u) is rate of progression for subject i at time t
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Maximum likelihood estimates of model parameters

RE(%)= 100(exp(α̂)− 1) corresponds to estimated annual
percentage change in renal function.

Parameter Estimate SE RE(%)
α0 intercept 4.6006 0.0203
α1 female -0.0877 0.0048 -8.4
α2 age on entry -0.0048 0.0004 -0.5
α3 follow-up -0.0232 0.0011 -2.3
α4 age>56.5 -0.0075 0.0006 -0.6

ω2 intercept 0.1111 0.0012
σ2 signal 0.0141 0.0002
τ 2 noise 0.0469 0.0001
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Sample data-sequences
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Simulations
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Prediction: classic progression pattern
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Prediction: AKI (Acute Kidney Injury) recovery
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Prediction: non-recovery from AKI
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Work-in-prospect

Field-testing: comparative evaluation against current methods

eye-balling

OLS fit to three most recent values

Informative follow-up: eGFR more likely to be measured when
subject is in poor health

⇒ joint modelling of eGFR measurements and follow-up times

Implementation: in clinical practice...needs informatics expertise
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Gastro-intestinal disease

Reported UK annual incidence

Campylobacter 50, 000

Salmonella 10, 000

Cryptosporidium 5, 000

Giardia 3, 000

E Coli,... ?
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Real-time spatial surveillance, ca 2003

AEGISS: Ascertainment and Enhancement of

Gastroenteric Infection Surveillance Statistics

largely sporadic incidence pattern

concentration in population centres

occasional “clusters” of cases

Can spatial statistical modelling enable earlier detection of
“clusters”?
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AEGISS: Cox process model

actual = expected× unexpected

λ(x, t) = λ0(x, t)× R(x, t)

Scientific objective

use incident data up to time t to construct predictive
distribution for current “risk” surface, R(x, t),

hence identify anomalies, for further investigation.
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AEGISS model formulation

λ(x, t) = λ0(x, t)R(x, t)

λ0(x, t) = λ0(x)µ0(t)

R(x, t) = exp{S(x, t)}

S(x, t) = spatio-temporal Gaussian process

Conditional on R(x, t), incident cases form an

inhomogeneous Poisson process with intensity λ(x, t)
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λ̂0(x): adaptive kernel smoothing
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µ̂0(t): Poisson log-linear model
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Spatio-temporal covariance

ρ(u, v) = ρx(u)ρt(v)
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Spatial prediction

plug-in for estimated model parameters

MCMC to generate samples from conditional
distribution of S(x, t) given data up to time t

choose critical threshold value c > 1

map empirical exceedance probabilities,

pt(x) = P (exp{S(x, t)} > c|data)

web-based reporting with daily updates

(www.lancs.ac.uk/staff/diggle/aegiss/)
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Spatial prediction: 6 March 2003

c = 2
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Spatial prediction: 6 March 2003

c = 4
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Spatial prediction: 6 March 2003

c = 8
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Fast-forward to 2015

expand to national coverage

integrate human and small-animal veterinary surveillance

BUT...

replacement of single NHS Direct by multiple NHS111 services

full post-code data no longer available!

SAVSNET: real-time data-feed from network of small-animal vet
practices:

practice location

species (cat or dog)

diagnosis

http://www.savsnet.co.uk/realtimedata/
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Work-in-prospect

re-calibration of AEGISS model

coarser spatial resolution...fitting spatially continuous models
to spatially discrete data

joint modelling of human and animal incidence

implementation as part of routine surveillance systems

Peter J Diggle Statistical Methods for real-time monitoring of health outcomes



Malaria prevalence mapping

Peter J Diggle Statistical Methods for real-time monitoring of health outcomes



Prevalence mapping 1

Single prevalence survey

Sample n individuals, observe Y positives

Y ∼ Bin(n, p)

Multiple prevalence surveys

Sample ni individuals, observe Yi positives, i = 1, ...,m

Yi ∼ Bin(ni, pi) ?
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Prevalence mapping 2

Extra-binomial variation

Sample ni individuals, observe Yi positives, i = 1, ...,m

Yi|di,Ui ∼ Bin(ni, pi) log{pi/(1− pi)} = d′iβ + Ui

Question: What to do if the di and/or the Ui are spatially
structured
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Geostatistical model for prevalence data

Latent spatially correlated process

S(x) ∼ SGP{0, σ2, ρ(u))} ρ(u) = exp(−|u|/φ)

Latent spatially independent random effects

Ui ∼ iidN(0, ν2)

Linear predictor (regression model)

d(x) = environmental variables at location x
η(xi) = d(xi)′β + S(xi) + Ui

p(xi) = log[η(xi)/{1− η(xi)}]

Conditional distribution for positive proportion Yi/ni

Yi|S(·) ∼ Bin{ni, p(xi)} (binomial sampling)
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Multiple surveys (Giorgi et al, 2015)

Surveys: i = 1, . . . , r locations xij : j = 1, . . . , ni

ηij = d(xij)
>β1 + Si(xij) + I(i ∈ B)[Bi(xij) + d(xij)

′βi] + Uij

1

S1

2
*

B2

2

S2
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Malaria mapping, Chikhwawa district, Malawi
(Giorgi et al, 2015): rMIS individual locations
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Malaria mapping, Chikhwawa district, Malawi
(Giorgi et al, 2015): eMIS individual locations
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Malaria mapping, Chikhwawa district, Malawi
(Giorgi et al, 2015): EAG village locations and prevalences
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Continuous time: rolling malaria indicator surveys

Hotspots: P(prevalence > 20%)

Peter J Diggle Statistical Methods for real-time monitoring of health outcomes



Continuous time: rolling malaria indicator surveys

Coldspots: P(prevalence < 5%)
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Work-in-prospect: Majete national park project, Malawi

adaptive design strategies

embedded RCT of community-level interventions
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Closing remarks

Operational issues

predictive probability of exceedance over intervention threshold

to inform, but not to over-ride, clinical judgement

Methodological issues:

observational studies vs trials

long series with irregular follow-up times

informative follow-up...marked point process models
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