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SNP-based heritability analysis: born 2010



SNP-based heritability analysis: slope of regression line
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especially if they have low MAF, will not be in perfect LD with the 
assayed SNPs. This reduces the power of a conventional GWAS to 
detect them and reduces the variance estimated for the SNPs col-
lectively in our study. The results imply that most causal variants 
explain such a small proportion of the variance that many causal 
variants affecting height must exist. The results of published GWASs 
are consistent with this finding, as high test statistics are distributed 
over much of the genome16.

Could our results be biased because of ascertainment in the data, 
data analysis or interpretation? We carefully adjusted phenotypes 
for systematic differences and applied thorough quality control to 
the SNP data (Online Methods). We show by principal component 
analysis (PCA) of African, Asian and European populations that all 
of our samples are of European ancestry (Supplementary Fig. 2a,b). 
We demonstrate further by PCA of European populations only that 
our samples show close relationship to the UK population and do not 
show an apparent cline across Europe (Supplementary Fig. 2c,d). 
We performed REML analysis by fitting the first two, four and ten 
eigenvectors from the European-only PCA as covariates. The results 
show little to no systematic difference in the estimates of the variance 
explained by fitting up to ten eigenvectors (Supplementary Table 1). 
Furthermore, we performed single-SNP association analysis between 
1,286 ancestry-informative markers (AIMs) and height, and did 
not detect a significant inflation of the test statistic for these AIMs 
(Supplementary Fig. 3; P = 0.219). All these results suggest that our 
estimate of variance explained by all SNPs is unlikely to be biased by 
population stratification. A subtle form of stratification in GWASs 
might occur if subjects are distantly related. We excluded any subject 
with a relationship to another subject >0.025. If distant pedigree rela-
tionships were an important cause of the estimated relationships, then 
all chromosomes of a pair of subjects should reflect this relationship. 
We found no correlation between relatedness estimated from different 
chromosomes (Supplementary Table 2). Thus, the relationships we 
estimate from SNPs are driven by LD among the SNPs. It is the same 
LD that causes a SNP that is not a causal variant to show an associa-
tion with a trait such as height. In other words, our estimate of the 
variance explained by the SNPs is based on the same phenomenon as 
the SNP associations reported from GWASs (LD between SNPs and 
causal variants). However, we accumulate the variance explained by 
all SNPs and so are not limited by the need for individual SNPs to pass 
stringent significance tests.

We also verified that the estimates of variance explained by the 
SNPs are not driven by a few outlier individuals who are similar in 
height and in SNP genotypes (Fig. 3). We regressed the squared dif-
ference in height between each pair of individuals on the estimate 
of their relatedness. The intercept and slope are estimates of twice 
the phenotypic variance and minus twice the additive genetic vari-
ance explained by the SNPs, respectively23, so the estimate of variance 
explained by the SNPs from this regression analysis is ~0.51. The 
signal on the slope of the regression line comes from many points 

and is not due to a few outliers. Note that our maximum likelihood 
estimate is more accurate than this regression analysis; we show the 
latter only to illustrate the robustness of the estimate. In addition, we 
performed REML analysis using subsets of individuals by randomly 
splitting the whole sample into two and four groups and by sampling 
1,000, 2,000 and 3,000 individuals with replacement for four replicates 
(Supplementary Fig. 4). The average estimates of variance explained 
by all SNPs are not affected by sample size, but, as expected, the sam-
pling error increases as sample size decreases.

Heritability is the proportion of phenotypic variation due to addi-
tive genetic factors24; we therefore fitted a model in which SNPs have 
additive effects. Non-additive genetic variation and variation due to 
gene-environment interactions may exist, but they are not part of the 
missing heritability because they do not contribute to the heritability. 
Epigenetic mutations may cause resemblance between relatives and 
contribute to heritability if stably inherited, but in that case they would 
be equivalent to DNA sequence variants, would show LD with the 
assayed SNPs and would not contribute to missing heritability25.

The method we have presented could be misinterpreted as a method 
for estimating the heritability of height. Actually, we estimate the 
variance in height explained by the SNPs. We show that these SNPs 
do explain over half the estimated heritability of height and that the 
missing proportion can be explained by incomplete LD between the 
SNPs and causal variants.

If other complex traits in humans, including common diseases, 
have genetic architecture similar to that of height, then our results 
imply that larger GWASs will be needed to find individual SNPs that 
are significantly associated with these traits, because the variance 
typically explained by each SNP is so small. Even then, some of the 
genetic variance of a trait will be undetected because the genotyped 
SNPs are not in perfect LD with the causal variants. Deep resequenc-
ing studies are likely to uncover more polymorphisms, including 
causal variants that will be represented on future genotyping arrays. 
Our data provide strong evidence that the variation contributed by 
many of these causal variants is likely to be small and that very large 
sample sizes will be required to show that their individual effects are 
statistically significant. A similar conclusion was drawn recently for 
schizophrenia26. In some cases the small variance will be due to a 
large effect for a rare allele, but this will still require a large sample 
size to reach significance. Genome-wide approaches like those used 
in our study can advance understanding of the nature of complex-trait 
variation and can be exploited for selection programs in agriculture27 
and individual risk prediction in humans28.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturegenetics/.
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Figure 3 All pairwise comparisons contribute to the estimate of genetic 
variance. Shown are the squared z-score differences between individuals  
( y jk

2 ) plotted against the adjusted estimates of genetic relationship (Ajk
* ).  

The blue line is the linear regression line of y jk
2  on Ajk

* . The intercept 
and regression coefficient are estimates of twice the phenotypic variance 
and minus twice the genetic variances23, respectively. The intercept is 
1.98 (s.e. = 0.001), and the regression coefficient is −1.01 (s.e. = 0.27), 
consistent with estimates of the phenotypic and additive genetic variance 
of 0.990 and 0.505, respectively, and a proportion of variance explained 
by all SNPs of 0.51.
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Heritability: key ideas

Heritability is the fraction of phenotypic variance that can be
explained by genetics. Related individuals have correlated
genotypes: heritability measures the extent to which this implies
correlated phenotypes.

I It measure how “genetic” a trait is, relative to
”environmental” causes, so it is environment-specific.

I We are mostly concerned with “narrow sense” heritability or
h2 and so only additive genetics. h2 is the variance explained
by a linear regression

E[Y ] = β0 +
∑
j

βjXj = Xβ

where Y is phenotype, Xj is genotype (additive coding;
standardised) at jth locus, and the sum is over causal loci.

I Problem: we don’t know the causal variants or effect sizes.



Clever idea: mixed model approach

Assuming a Gaussian model, the linear regression can be
formulated as a mixed regression model:

Y = γ + ε

where Var[ε] = σ2e I and γ is a latent genetic “random effect” with
Var[γ] = σ2gK. Then h2 = σ2g/(σ2g+σ2e ).

I Estimation of σ2g and σ2e usually done via REML.

I Ideally we want K = (Xβ)(Xβ)T but we don’t know β or X.

I Traditional approach has been to approximate K by kinship
coefficients computed from pedigrees.



What’s wrong with pedigree-kinship?

Through familiarity, pedigree-based kinships came to be seen as
the canonical measures of relatedness, but they aren’t very good.

I They depend on the pedigree that happens to be available:
there is no such thing as a complete or ideal pedigree.

I What matters is allele sharing at causal loci, but pedigrees
only specify expected, genome-wide allele sharing;

I The fraction of genome shared by sibs from their parents can
be < 0.4 or > 0.6.

In fact, there is no definitive way to measure the kinship of two
individuals, and it is better to speak of genomic similarity, which
can be measured from genome-wide SNPs or sequences.

See: Speed & Balding “Relatedness in the post-genomic era: is it
still useful?” Nat Rev Genet Jan 2015



Genome sharing between pairs of “regular” relatives

Fraction Identical by Descent
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Statistics of IBD sharing (update of Donnelly 1983)

# # θ(A,B) P[IBD E[# E[rl]
Relationship G A E[IBD]/4 95% CI >0] sr] (Mb)

Sibling 1 2 0.250 (0.204,0.296) 1.000 85.3 31.3
1/2-sib 1 1 0.125 (0.092,0.158) 1.000 42.6 ”
Cousin 2 2 0.063 (0.039,0.089) 1.000 37.1 18.0

1/2-cuz 2 1 0.031 (0.012,0.055) 1.000 18.5 ”
2nd-cuz 3 2 0.016 (0.004,0.031) 1.000 13.2 12.6

1/2-2nd-cuz 3 1 0.008 (0.001,0.020) 0.995 6.6 ”
3rd-cuz 4 2 0.004 (0.000,0.012) 0.970 4.3 9.7

5 2 0.001 (0.000,0.005) 0.675 0.7 7.9
7 2 (1/2)14 (0.000,0.001) 0.098 0.1 5.5
9 2 (1/2)18 0.009 0.0 4.4

1

G: # generations: we consider a single lineage path of 2G steps;
A: ancestors; sr = shared regions; rl = region length



SNP-based measures of genomic similarity

There are many ways to measure genetic similarity of two
individuals from genome-wide genetic markers (SNPs),

I which one is the best?

One difficulty in humans is that we are all closely related:

I Any two haploid human genomes share over 99.9% sequence
identity due to shared ancestry.

I This isn’t evident for SNPs because they are highly
polymorphic, but

I measures of similarity can depend sensitively on the Minor
Allele Fraction (MAF) spectrum.

I more low-MAF sites ⇒ more similarity.
I MAF spectrum depends on SNP chip and QC.



SNP-based kinships

Two approaches:

I Average haplotype sharing. Useful in some settings, but
small (e.g. < 1Mb) shared fragments are informative yet hard
to exploit.

I Genome-wide average of a single-SNP measure.

Single-SNP approach 1: Average allele-sharing

I Given two individuals, code the SNP genotypes of each as 0,1
and 2, where 1 = heterozygote. Average the following scores:

(0, 0) or (2, 2) → 1
(0, 1), (1, 1) and (1, 2) → 1/2

(0, 2) → 0

I Disagreement about how to code heterozygotes: PLINK codes
(1,1) as 1, rather than 0.5.



single-SNP approach 2: Average allelic correlation

Write Gij for genotype of i at the jth SNP (allele count), then for i
and i ′ use genome-wide average of single-SNP sample-size-1
correlation estimates:

1

m

m∑
j=1

(Gij − 2pj)(Gi ′j − 2pj)

2pj(1−pj)
so K =

1

m
XXT

Now K has contributions from genome-wide SNPs:

I better than pedigrees: actual allele sharing

I worse: causal variants contribute only if tagged by SNPs
(biased towards common variants)



Yang et al. (2010) estimated h2 using mixed-model with
average-allelic-correlation K from genome-wide SNPs.

I A key feature is the use of unrelated pairs of individuals.

Using unrelated individuals

In 2010, Jian Yang, Peter Visscher, et al. considered estimating heritability
using only “unrelated individuals”.

Why? Estimates of h2 become less precise as number of close relatives in
the sample decreases

BCGES Short Courses 1st September 2015 doug.speed@ucl.ac.uk



Heritabilities of some human traits

Height Schizophrenia Obesity Crohn's Disease Bipolar Epilepsy
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Mixed-model estimation of SNP-h2 works well

We conducted a simulation study to investigate the robustness of
ĥ2 based on this method. See Speed et al. Am J Hum Genet
(2012) for details. We found the method to be remarkably robust
to

I number of causals,

I causal MAF spectrum,

I effect size distribution

But ...



ĥ2 estimates not robust to LD
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Local level of LD

If an extra SNP is
genotyped in high LD
with an existing SNP
tagging a causal, then
part of the contribution
to ĥ2 from that causal is
double-counted:
“over-tagging”.

This can occur whether
or not the causal is itself
genotyped.



Reweighting to reduce the problem of uneven tagging

Adjusting for Uneven Tagging
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We suggest calculating weighted allelic correlations.

Nobel Prize Speech 20th May 2015 doug.speed@ucl.ac.uk



Reweighting improves estimation of h2
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This reweighting is implemented in Doug Speed’s software for h2

estimation and prediction, LDAK (LD-Adjusted Kinships)
http://dougspeed.com/ldak/



How are causal variants distributed with respect to LD?
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for LD heterogeneity, for example, the LDAK approach16, which gives 
each variant a weight according to the LD r2 value between the vari-
ant and all other variants in the region, and the LD residual (LDres) 
approach15,17, which uses the residuals from a linear regression of each 
variant on a set of LD-pruned variants in the region. However, the 
LDAK adjustment resulted in a substantial overestimation of hWGS

2 ,  
regardless of whether the variants were stratified by MAF (Fig. 1). 
This is because the LDAK adjustment created a strong negative corre-
lation between the weights and MAFs of the variants (Supplementary 
Fig. 2), such that rare variants, which tend to have lower LD with sur-
rounding variants, received too much weight. We also observed small 
biases using LDres and MAF-stratified LDres (LDres-MS) (Fig. 1). We 
propose a method (Online Methods), termed LD- and MAF-stratified 
GREML (GREML-LDMS), which uses a sliding window approach to 
fit the region-specific LD heterogeneity across the genome (Fig. 2). 
We demonstrate by analyzing simulated data, under four different 
scenarios, that the GREML-LDMS estimates of hWGS

2  are unbiased, 
regardless of the MAF and LD properties of causal variants (Fig. 1) 
and the number of LD and MAF groups (Supplementary Fig. 3).  
The heritability parameter used in all the simulations above was 0.8. 
We show that all the conclusions hold irrespective of the size of the 
heritability parameter used for simulation (Supplementary Table 1).

Variation at whole-genome sequence variants captured by 
1000 Genomes Project imputation
We have quantified above the (un)biased nature of GREML methods 
in estimating hWGS

2  under different simulation scenarios. In practice, 
however, there have not been whole-genome sequencing data available 
with a sample size that is sufficiently large to estimate hWGS

2  with useful 
precision. However, there are a large number of GWAS samples avail-
able that have been imputed to the 1000 Genomes Project reference 
panels. We therefore addressed the question of how much variation 
at sequence variants could be captured by imputing GWAS genotype 
data to the 1000 Genomes Project reference panels. From UK10K-
WGS data, we extracted the genotypes of variants represented on the 
Illumina CoreExome array and then imputed the genotype data to 
the 1000 Genomes Project reference panels (Online Methods). We 
used the GREML-MS approach (seven genetic components) to esti-
mate the variance explained by the 1000 Genomes Project–imputed 
variants (h1KGP2 ) for the simulated phenotype (1,000 causal variants 
randomly sampled from all sequence variants) (Online Methods). We 
know from the simulation results presented above that, under this 
scenario (that is, where causal variants are sampled completely at 
random), all three GREML methods—GREML-SC, GREML-MS and 
GREML-LDMS—are unbiased. We chose to use GREML-MS because 
it is able to provide estimates of variance explained for variants in 
different MAF groups with standard errors smaller than those from 
GREML-LDMS (Supplementary Table 1). The results showed that 
the proportion of variation at variants from whole-genome sequenc-
ing captured by 1000 Genomes Project imputation decreased with 
more stringent thresholds for imputation accuracy (the INFO metric  

imputing the SNP array data to the 1000 Genomes Project reference 
panels10, where h hWGS 1KGP

2 2  because of the loss of tagging due  
to imperfect imputation. We previously developed the single- 
component GREML analysis (GREML-SC) method (based on a single 
genetic relationship matrix, or GRM) as implemented in GCTA11 
to estimate the proportion of variance explained by all common 
SNPs in a GWAS sample of unrelated individuals12. To quantify the 
amount of variation at sequence variants that could be captured by 
1000 Genomes Project imputation, we first needed to investigate 
whether this approach could provide an unbiased estimate of herit-
ability using whole-genome sequencing data. We performed exten-
sive simulations based on a whole-genome sequencing data set from 
the UK10K project13 (UK10K-WGS), which comprised 17.6 million 
genetic variants (excluding singletons and doubletons) in 3,642 unre-
lated individuals after quality controls (Online Methods). The simu-
lation results showed that, if causal variants were a random subset 
of all the sequence variants (52.7% rare), the GREML-SC estimate  
of hWGS

2  using all variants (including the causal variants) was unbiased 
(Fig. 1), consistent with our theoretical derivation (Supplementary 
Note). By ‘unbiased’, we mean that the mean estimate of hWGS

2  from 
200 simulation replicates was not significantly different from the 
h2 parameter used for simulation. We could also expect from the 
theoretical derivation that, if causal variants had a different MAF  
spectrum than the variants used in the analysis, the GREML-SC  
estimate of hWGS

2  would be biased. This was demonstrated  
using simulations (Online Methods): if we randomly sampled  
disproportionally rare (or common) variants as causal variants, 
the estimate of hWGS

2  was biased downward (or upward) (Fig. 1).  
This problem has been discussed previously12 and can be solved by 
MAF-stratified GREML (GREML-MS) analysis14 (Online Methods). 
We show by simulations that the estimate of hWGS

2  from GREML-MS  
was unbiased, irrespective of the MAF spectrum of the causal  
variants (Fig. 1).

We know from the theoretical derivation (Supplementary Note) 
that GREML-SC is biased if causal variants have a different LD prop-
erty than the variants used in the analysis. A difference in LD can 
be caused by a difference in the MAF spectrum, which can be cor-
rected for using the GREML-MS approach, as shown above. However, 
GREML-MS is unable to correct for the region-specific LD hetero-
geneity across the genome (Supplementary Fig. 1). That is, if causal  
variants tend to be enriched in genomic regions with higher or 
lower LD than average, the estimate of h2 from either GREML-SC 
or GREML-MS will be biased. We confirmed this using simulations 
where, if all causal variants were sampled from the variants at DNase I–
hypersensitive sites (DHSs) (Online Methods), which have systemati-
cally lower LD than average15, the GREML-MS estimate of hWGS

2  was  
biased downward (Fig. 1). Methods have been developed to adjust 
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Figure 1 Estimates of heritability using sequence variants under different 
simulation scenarios based on the UK10K-WGS data set. Each column 
represents the mean estimate from 200 simulations. Error bars, s.e.m. 
The true heritability parameter was 0.8 for the simulated trait. Four 
simulation scenarios are shown: random causal variants are sampled at 
random; more common causal variants are more frequent than random 
variants; rarer causal variants are less frequent than random variants;  
rarer + DHS causal variants are all in DHSs and are less frequent 
than random variants (see the Online Methods for more details on the 
simulation scenarios).



How are causal variants distributed with respect to LD?

I Yang et al. Nat Genet 2015 claimed that LDAK
over-estimates h2 for sequence data.

I But their simulations distributed causal variants across SNPs
ignoring LD

I So their simulations assume that the problem LDAK is
designed to solve doesn’t exist!

I LDAK is based on the idea of downweighting apparent
contributions to h2 when LD is high:

I For SNP data, this makes sense, as SNPs in high LD are likely
to be tagging the same causal variant (if any).

I For sequence data, it also seems likely that two SNPs in high
LD tag less causal variation in total than two SNPs in low LD.

I This is an empirical question that can be checked (not easy).



New flexibility in heritability analysis

The mixed-model h2 analysis brings with it useful computational
tools, but is now unnecessary and with SNP data better to go back
to the defining linear regression model E[Y ] = Xβ except now

I use genotyped SNPs as proxies for causal variants;

I apply a Gaussian “shrinkage” distribution on the β (ridge
regression)

By restricting to SNPs in particular genomic regions, we can now
investigate the distribution of h2 across the genome.

I Pioneered by Yang et al. (2011) but we’ve made several
improvements.



h2 intensity over genomic regions

For larger genomic regions we need to compare the heritability
with that expected given the region size.

I ”Intensity of heritability” is the heritability per unit genetic
variance of the region.

Apply first to genes and their flanking regions:



h2 intensity of exons and non-genic regions

The Role of Genes

Is intensity of heritability higher for exonic than inter-genic SNPs?

Inter-genic defined as >100kb from a coding region.

Nobel Prize Speech 20th May 2015 doug.speed@ucl.ac.uk



Intensity of heritability for breast cancer eQTLs

∼3K SNPs associated with expression of any gene in tumour
tissue, corrected for somatic effects (from Curtis et al., 2012).

h2 intensity
Trait h2 eQTLs other SNPs p

Control-Control 21 0 0.3 0.55
CD 60 5 1 0.055
BD 64 5 1 0.074

CAD 37 1 0.6 0.47
T2D 46 3 0.8 0.16

Hypertension 48 2 0.8 0.30
Schizophrenia 62 0 1 0.76

RA 45 40 0.5 5e-32
T1D 63 70 0.6 2e-88

Many of the tumours have significant lymphocytic infiltration
which could explain the large effect on the auto-immune diseases
RA and T1D.



p-values for h2 intensity of eQTLs in different tissue types

Trait BC Monocytes EB-Lympho Hap Map Brain
C-C 0.55 0.60 0.59 0.38 0.72
CD 0.055 0.014 0.082 0.24 0.86
BD 0.074 0.078 0.79 0.50 0.92
CAD 0.47 0.27 0.44 0.30 0.71
T2D 0.16 0.20 0.70 0.46 0.56
Hyp 0.30 0.00027 0.39 0.74 0.93
Schiz 0.76 0.54 0.25 0.84 0.66
RA 5e-32 0.081 0.0070 0.044 0.257
T1D 2e-88 0.00021 7e-16 3e-5 0.75

I Human monocytes, Zeller 2010, PLoS1, n=1500, cis or trans.

I Epstein-Barr-transformed lymphoblastoid cell lines, Dixon 2007, Nat
Genetics. n=400, cis or trans eQTLs.

I HapMap lymphoblastoid cell lines: Choy, 2008, Dimas 2009,
Mongomery 2010, Pickrell 2010, Price 2008, Spielman 2008,
Stranger 2007. n=1400, cis ONLY

I Human cortical gene expression, neuropathologically normal human
brain samples (Myers, 2007). n=200, cis ONLY



h2 of SNPs associated with another trait

Concordance Between Traits

Are SNPs associated with one trait more important for others.

  

p-values for Schizophrenia and Crohn’s obtained from independent studies.

Nobel Prize Speech 20th May 2015 doug.speed@ucl.ac.uk



Gene-based tests of association using local h2

Simulation Study

Generate phenotypes where 50/1000 genes contribute heritability.
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GBAT most powerful (and fastest).
Nobel Prize Speech 20th May 2015 doug.speed@ucl.ac.uk



Gene-based association applied to three CCC traits

GBAT

GBAT provides a complement to single-SNP tests of association.
p-values are well-suited for pathway analysis.

Nobel Prize Speech 20th May 2015 doug.speed@ucl.ac.uk

Gene-based tests (diamonds) complement single-SNP tests (red/green)



Extend gene-based tests to meta-analysis and subdivide
genes into exons: Epilepsy consortium 12 cohorts

Exon/Intron/Intergenic-Analysis

Files: epiBall.jpg, epiBgen.jpg, epiBpart.jpg
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Closer look at top 3 hits: by genomic region
Top three “hits”
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Closer look at SCN1A: by cohort
SCN1A - All epilepsy
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Prediction of phenotype from genome-wide SNPs

I The new ideas about heritability are having an impact on
prediction of traits.

I BLUP is a long-established “shrinkage regression” technique
for phenotype prediction, much used in animal/plant breeding.

I It uses a matrix of kinship coefficients to describe phenotype
correlations due to (polygenic) inheritance.

I In the past, pedigree kinships, now SNP allelic correlations.

I MultiBLUP (Speed & Balding, Genome Res, Dec 2014)
extends BLUP by allowing reduced shrinkage in promising
genomic regions.

I Model Y =
∑M

m=1 γm + ε where Var[γm] = σ2mKm with Km

computed from SNPs in mth region and Var[ε] = σ2e I.

I The M regions can be pre-specified or chosen by MultiBLUP.

MultiBLUP is incorporated in the LDAK software.



Adaptive MultiBLUP O↵ers Flexible Shrinkage

Genetic Profile
Risk Scores

BLUP

Adaptive
MultiBLUP
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(no shrinkage)

(uniform shrinkage)

(flexible shrinkage,
here M = 3)



Prediction for Crohn’s Disease with 5 a priori regions:
3 pathways + 2 genes

Random Effect Region h2 Region r2

IL-9 Signalling 0.006 0.003
IL-2 Receptor Beta Chain 0.003 0.001

IL12 Pathway 0.019 0.016
Gene NOD2 0.012 0.012
Gene IL23R 0.008 0.007

Background Region 0.96 0.09

Correlation of predicted and true values in cross-validation
improves from 0.10 (BLUP) to 0.12 (MultiBLUP with 5 regions).



Adaptive MultiBLUP for WTCCC 1 disease traits

Current methods
Risk Score Stepwise Adaptive

Trait BLUP (− log10(P)) Regression BSLMM MultiBLUP

BD 0.27 0.25 (1) 0.02 0.27 0.27
CAD 0.13 0.12 (1) 0.08 0.15 0.16
CD 0.32 0.28 (1) 0.18 0.34 0.36
Ht 0.15 0.14 (1) 0.00 0.14 0.17
RA 0.21 0.28 (3) 0.32 0.33 0.37
T1D 0.25 0.34 (5) 0.54 0.57 0.59
T2D 0.16 0.14 (1) 0.10 0.17 0.18
Av. 0.21 0.22 0.18 0.28 0.30

Entries are correlations, bold indicates highest predictive accuracy.

Compute times: Risk score / BLUP: < 1 hr, Stepwise Regression:
2 hrs to 5 days, MultiBLUP: 2-3 hrs, BSLMM: 8-30 hrs.



Some larger datasets

Stepwise Regression and BSLMM not feasible.
Performance, measured as correlation (AUC):

Irritable Bowel Disease (12,678 individuals, 1.5M SNPs):

I BLUP: 0.15 (0.58)

I Risk Score: 0.21 (0.63)

I MultiBLUP: 0.34 (0.68)

Celiac Disease (15,283 individuals, 200k SNPs):

I BLUP: 0.40 (0.76)

I Risk Score: 0.44 (0.78)

I MultiBLUP: 0.54 (0.84)



Speed et al. Brain 2014: “heritability” analysis of epilepsy

I Estimated 26% of variance of the liability to “all epilepsy” is
attributable to 4 million genotyped and imputed SNPs (after
correction for population structure effects and genotyping
errors).

I SNPs near previously-reported epilepsy loci explain only about
4% of variance.

I Can similarly attribute heritability to various functional
classifications (up to a margin of error).

I Contribution from different large-scale genomic regions
approximately uniform.

I From lack of genome-wide significant SNPs, inferred 100s and
probably 1,000s of causal variants.

I Common genetic basis of focal and non-focal epilepsy
estimated around 50% of total

I imprecise estimate, but significantly different from both 0 and
100%.

I Showed potential for useful prediction of disease progression
in single-seizure cases.


